top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Wearable Robotics : Proceedings of the 5th International Symposium on Wearable Robotics, WeRob2020, and of WearRAcon Europe 2020, October 13-16 2020
Wearable Robotics : Proceedings of the 5th International Symposium on Wearable Robotics, WeRob2020, and of WearRAcon Europe 2020, October 13-16 2020
Autore Moreno Juan C
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2021
Descrizione fisica 1 online resource (594 pages)
Altri autori (Persone) MasoodJawad
SchneiderUrs
MaufroyChristophe
PonsJosé L
Collana Biosystems and Biorobotics Ser.
Soggetto genere / forma Electronic books.
ISBN 3-030-69547-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- What Should We Expect from Passive Exoskeletons? -- The Hidden Potential of Energetically Passive Exoskeletons -- 1 Introduction -- 2 Materials and Methods -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Effect of a Back-Assist Exosuit on Logistics Worker Perceptions, Acceptance, and Muscle Activity -- 1 Introduction -- 2 Methods -- 2.1 Training -- 2.2 Simulated Lifting and Lowering Tasks -- 2.3 Real Work Environment Evaluation -- 3 Results -- 4 Discussion and Conclusion -- References -- A Design Tool for Passive Wrist Support -- 1 Introduction -- 2 Methods -- 2.1 Proposed Design -- 2.2 Beam Shape Optimization -- 3 Results and Discussion -- 4 Conclusion -- References -- The Key Elements in the Design of Passive Assistive Devices -- 1 Introduction -- 2 Methods -- 2.1 Compliance and Multi Articular Engagement -- 2.2 Case Study -- 3 Results -- 4 Conclusion and Future Work -- References -- Novel Designs for Passive Elastic Lower Limb Exoskeletons -- 1 Introduction -- 2 Historical Devices -- 3 Lower Limb Exoskeleton Devices -- 4 Conclusion -- References -- Passive Compliance in Legged Systems and Assistive Devices -- 1 Summary -- 2 The Upright Human Body Posture -- 3 Mechanical Design of Human Legged Locomotion -- 4 Assistance by Compliant Mechanisms -- 5 Tuned Mechanics by Control -- 6 Tuned Mechanics by Control -- 7 Conclusion and Future Work -- References -- Spring Like Passive Elastic Exoskeletons May Improve Stability and Safety of Locomotion in Uneven Terrain -- 1 Introduction -- 2 Material and Methods -- 2.1 Mathematical Model -- 2.2 Experimental Protocol -- 2.3 Outcome Measures -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Balance Recovery Support Using Wearable Robotic Devices -- Ankle-Exoskeleton Control for Assisting in Balance Recovery After Unexpected Disturbances During Walking.
1 Introduction -- 2 Material and Methods -- 2.1 Robotic Exoskeleton -- 2.2 Controller -- 2.3 Experiment -- 3 Results -- 4 Discussion and Conclusion -- References -- Coupling an Active Pelvis Orthosis with Different Prosthetic Knees While Transfemoral Amputees Manage a Slippage: A Pilot Study -- 1 Introduction -- 2 Materials and Methods -- 2.1 Subjects, Experimental Setup, Protocol and Data Analysis -- 3 Results -- 4 Discussion and Conclusion -- 5 Conclusion -- References -- Self-induced Gyroscopic Torques in Lower Extremities During Gait: A Pilot Study -- 1 Introduction -- 2 Materials and Methods -- 3 Results and Discussion -- 4 Conclusion -- References -- Comparison of Balance Recovery Among Current Control Strategies for Robotic Leg Prostheses -- 1 Introduction -- 2 Comparison of Balance Recovery -- 3 Continuously Reactive Prosthesis -- 4 Conclusion -- References -- Reflex-Model with Additional COM Feedback Describes the Ankle Strategy in Perturbed Walking -- 1 Introduction -- 2 Methods -- 2.1 Experiments -- 2.2 Inverse Kinematic and Dynamic Analysis -- 2.3 Reflex Parameter Estimation -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Optimising Balance Margin in Lower Limb Exoskeleton to Assist User-Driven Gait Stability -- 1 Introduction -- 2 Materials and Method -- 2.1 Human-Exoskeleton Model -- 2.2 Gait Parameterisation -- 2.3 Reward Function -- 2.4 Simulation and Evaluation -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Active Life with Prosthesis -- Control of Servomotor Rotation in a Myoelectric Upper-Limb Prosthesis Using a 16-Channel sEMG Sensor System -- 1 Introduction -- 2 Materials and Methods -- 2.1 Recording of the Measurements -- 2.2 Channel Identification -- 2.3 Servomotor Control -- 2.4 Validation -- 3 Results and Discussion -- 4 Conclusion -- References.
Compliant Control of a Transfemoral Prosthesis Combining Predictive Learning and Primitive-Based Reference Trajectories -- 1 Introduction -- 2 Control Architecture -- 2.1 Generation of Reference Trajectories -- 2.2 Feed-Forward Contribution: Prediction Torque -- 2.3 Feedback Contribution: Error Correction -- 3 Simulation Results -- 4 Discussion and Conclusion -- References -- Design and Testing of a Fully-Integrated Electro-Hydrostatic Actuator for Powered Knee Prostheses -- 1 Introduction -- 2 Materials and Methods -- 2.1 Biomechanical Requirements -- 2.2 Kinematics of Actuation -- 2.3 EHA Unit -- 3 Results -- 4 Discussion -- 5 Conclusions -- References -- Controlling Upper-Limb Prostheses with Body Compensations -- 1 Introduction -- 2 Materials and Methods -- 2.1 Control Law -- 2.2 Experimental Set-Up -- 3 Results -- 3.1 Task Performance -- 3.2 Joint Motions -- 4 Discussion -- 5 Conclusion -- References -- HandMECH-Mechanical Hand Prosthesis: Conceptual Design of a Two Degrees-of-Freedom Compliant Wrist -- 1 Introduction -- 2 Design -- 2.1 Design of the Wrist -- 2.2 Locking Mechanism -- 3 Analyses and Results -- 3.1 Kinematics and Kinetics -- 3.2 Structural analysis -- 4 Conclusion -- References -- HandMECH-Mechanical Hand Prosthesis: Conceptual Design of the Hand Compartment -- 1 Introduction -- 2 Design -- 2.1 Design of the Index Finger -- 2.2 Design of the Middle, Ring and Little Fingers -- 2.3 Thumb Design -- 2.4 Body-Powered Mechanism -- 3 Analyses and Results -- 4 Conclusion -- References -- Legislation, Safety and Performance: Regulatory Aspects in Wearable Robots -- CO-GUIDING: Ergonomic Analysis of a Hand Guidance System for Car Door Assembly -- 1 Introduction -- 2 Development -- 2.1 Workstation Description -- 2.2 Experimental Protocol -- 2.3 Simulated Test -- 2.4 Evaluation Method -- 3 Results -- 4 Conclusions and Discussion -- References.
ATEX Certification for ALDAK Exoskeleton in Petrochemical Industry -- 1 Introduction -- 2 Material and Methods -- 2.1 Normative References -- 2.2 Risk Assessment -- 2.3 Technical Documentation and Marking -- 3 Conclusion -- References -- Acceptance of Exoskeletons: Questionnaire Survey -- 1 Introduction -- 2 Material and Method -- 3 Results -- 3.1 Ease of Use -- 3.2 Performance Expectations -- 3.3 Social Influence -- 3.4 User's Emotional Reactions -- 4 Discussion and Conclusion -- References -- Perceived Exertion During Robot-Assisted Gait After Stroke -- 1 Introduction -- 2 Methods -- 2.1 Study Protocol -- 2.2 Participants -- 2.3 Experimental Procedure -- 2.4 Outcomes -- 2.5 Statistical Analysis -- 3 Results -- 4 Discussion and Conclusion -- References -- Testing Safety of Lower Limbs Exoskeletons: Current Regulatory Gaps -- 1 Introduction -- 2 Legislations -- 2.1 EU Directives and Regulations -- 2.2 American Food and Drugs Administration (FDA) -- 2.3 ISO/IEC Standards -- 2.4 ASTM -- 3 Conclusion -- References -- The Testing of Industrial Exoskeletons -- Evaluation of Two Upper-Limb Exoskeletons for Ceiling Welding in the Naval Industry -- 1 Introduction -- 2 Material and Methods -- 2.1 Instrumentation -- 2.2 Assistive Devices -- 2.3 Task Definition -- 2.4 Subjects, Tests and Measurements -- 3 Results -- 4 Discussion -- References -- Preliminary Study of an Exoskeleton Index for Ergonomic Assessment in the Workplace -- 1 Introduction -- 2 Materials and Methods -- 2.1 Experimental Design -- 2.2 Data Analysis -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Effect of a New Passive Shoulder Exoskeleton on the Full Body Musculoskeletal Load During Overhead Work -- 1 Introduction -- 2 Material and Methods -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- The Experience of Plasterers Towards Using an Arm Support Exoskeleton.
1 Introduction -- 2 Methods -- 2.1 Subjects -- 2.2 Procedures -- 3 Results -- 4 Conclusion -- References -- Biomechanical Evaluation of the Effect of Three Trunk Support Exoskeletons on Spine Loading During Lifting -- 1 Introduction -- 2 Material and Methods -- 2.1 Participants, Exoskeletons and Procedure -- 2.2 Measurements and Analyses -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Can HDEMG-Based Low Back Muscle Fatigue Estimates Be Used in Exoskeleton Control During Prolonged Trunk Bending? A Pilot Study -- 1 Introduction -- 2 Material and Methods -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Back-Support Exoskeleton Control Using User's Torso Acceleration and Velocity to Assist Manual Material Handling -- 1 Introduction -- 2 Control Strategies -- 2.1 Rationale for Using User's Dynamics -- 2.2 Implementation -- 3 Experimental Results -- 4 Discussion -- References -- Subjective Assessment of Occupational Exoskeletons: Feasibility Study for a Custom Survey for Braces -- 1 Introduction -- 2 Methods -- 2.1 Experimental Setup -- 2.2 Experimental Design -- 2.3 Questionnaire Form -- 3 Results -- 4 Conclusion -- References -- Evidenced-Based Indications/Contraindications for and Potential Benefits of Exoskeletal-Assisted Walking in Persons with Spinal Cord Injury -- Alteration of Push-Off Mechanics During Walking with Different Prototype Designs of a Soft Exoskeleton in People with Incomplete Spinal Cord Injury-A Case Series -- 1 Introduction -- 2 Methods -- 2.1 XoSoft -- 2.2 Participants -- 2.3 Data Collection -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- The Effect of Exoskeletal-Assisted Walking on Bowel and Bladder Function: Results from a Randomized Trial -- 1 Introduction -- 2 Materials and Methods -- 3 Results -- 4 Discussion -- 5 Conclusion -- References.
Smartwear with Artificial Intelligence (AI) in Assessing Workload in View of Ergonomics.
Altri titoli varianti Wearable Robotics
Record Nr. UNINA-9910497090003321
Moreno Juan C  
Cham : , : Springer International Publishing AG, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wearable robots [[electronic resource] ] : biomechatronic exoskeletons / / edited by José L. Pons
Wearable robots [[electronic resource] ] : biomechatronic exoskeletons / / edited by José L. Pons
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : Wiley, c2008
Descrizione fisica 1 online resource (360 p.)
Disciplina 617.9
617/.9
629.892
Altri autori (Persone) PonsJosé L
Soggetto topico Robotics in medicine
Prosthesis
Soggetto genere / forma Electronic books.
ISBN 1-281-32006-4
9786611320065
0-470-98766-9
0-470-98765-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Wearable Robots; Contents; Foreword; Preface; List of Contributors; 1 Introduction to wearable robotics; 1.1 Wearable robots and exoskeletons; 1.1.1 Dual human-robot interaction in wearable robotics; 1.1.2 A historical note; 1.1.3 Exoskeletons: an instance of wearable robots; 1.2 The role of bioinspiration and biomechatronics in wearable robots; 1.2.1 Bioinspiration in the design of biomechatronic wearable robots; 1.2.2 Biomechatronic systems in close interaction with biological systems; 1.2.3 Biologically inspired design and optimization procedures
1.3 Technologies involved in robotic exoskeletons1.4 A classification of wearable exoskeletons: application domains; 1.5 Scope of the book; References; 2 Basis for bioinspiration and biomimetism in wearable robots; 2.1 Introduction; 2.2 General principles in biological design; 2.2.1 Optimization of objective functions: energy consumption; 2.2.2 Multifunctionality and adaptability; 2.2.3 Evolution; 2.3 Development of biologically inspired designs; 2.3.1 Biological models; 2.3.2 Neuromotor control structures and mechanisms as models; 2.3.3 Muscular physiology as a model
2.3.4 Sensorimotor mechanisms as a model2.3.5 Biomechanics of human limbs as a model; 2.3.6 Recursive interaction: engineering models explain biological systems; 2.4 Levels of biological inspiration in engineering design; 2.4.1 Biomimetism: replication of observable behaviour and structures; 2.4.2 Bioimitation: replication of dynamics and control structures; 2.5 Case Study: limit-cycle biped walking robots to imitate human gait and to inspire the design of wearable exoskeletons; 2.5.1 Introduction; 2.5.2 Why is human walking efficient and stable?
2.5.3 Robot solutions for efficiency and stability2.5.4 Conclusion; Acknowledgements; 2.6 Case Study: MANUS-HAND, mimicking neuromotor control of grasping; 2.6.1 Introduction; 2.6.2 Design of the prosthesis; 2.6.3 MANUS-HAND control architecture; 2.7 Case Study: internal models, CPGs and reflexes to control bipedal walking robots and exoskeletons: the ESBiRRo project; 2.7.1 Introduction; 2.7.2 Motivation for the design of LC bipeds and current limitations; 2.7.3 Biomimetic control for an LC biped walking robot; 2.7.4 Conclusions and future developments; References
3 Kinematics and dynamics of wearable robots3.1 Introduction; 3.2 Robot mechanics: motion equations; 3.2.1 Kinematic analysis; 3.2.2 Dynamic analysis; 3.3 Human biomechanics; 3.3.1 Medical description of human movements; 3.3.2 Arm kinematics; 3.3.3 Leg kinematics; 3.3.4 Kinematic models of the limbs; 3.3.5 Dynamic modelling of the human limbs; 3.4 Kinematic redundancy in exoskeleton systems; 3.4.1 Introduction to kinematic redundancies; 3.4.2 Redundancies in human-exoskeleton systems; 3.5 Case Study: a biomimetic, kinematically compliant knee joint modelled by a four-bar linkage
3.5.1 Introduction
Record Nr. UNINA-9910144139603321
Chichester, England ; ; Hoboken, NJ, : Wiley, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wearable robots [[electronic resource] ] : biomechatronic exoskeletons / / edited by José L. Pons
Wearable robots [[electronic resource] ] : biomechatronic exoskeletons / / edited by José L. Pons
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : Wiley, c2008
Descrizione fisica 1 online resource (360 p.)
Disciplina 617.9
617/.9
629.892
Altri autori (Persone) PonsJosé L
Soggetto topico Robotics in medicine
Prosthesis
ISBN 1-281-32006-4
9786611320065
0-470-98766-9
0-470-98765-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Wearable Robots; Contents; Foreword; Preface; List of Contributors; 1 Introduction to wearable robotics; 1.1 Wearable robots and exoskeletons; 1.1.1 Dual human-robot interaction in wearable robotics; 1.1.2 A historical note; 1.1.3 Exoskeletons: an instance of wearable robots; 1.2 The role of bioinspiration and biomechatronics in wearable robots; 1.2.1 Bioinspiration in the design of biomechatronic wearable robots; 1.2.2 Biomechatronic systems in close interaction with biological systems; 1.2.3 Biologically inspired design and optimization procedures
1.3 Technologies involved in robotic exoskeletons1.4 A classification of wearable exoskeletons: application domains; 1.5 Scope of the book; References; 2 Basis for bioinspiration and biomimetism in wearable robots; 2.1 Introduction; 2.2 General principles in biological design; 2.2.1 Optimization of objective functions: energy consumption; 2.2.2 Multifunctionality and adaptability; 2.2.3 Evolution; 2.3 Development of biologically inspired designs; 2.3.1 Biological models; 2.3.2 Neuromotor control structures and mechanisms as models; 2.3.3 Muscular physiology as a model
2.3.4 Sensorimotor mechanisms as a model2.3.5 Biomechanics of human limbs as a model; 2.3.6 Recursive interaction: engineering models explain biological systems; 2.4 Levels of biological inspiration in engineering design; 2.4.1 Biomimetism: replication of observable behaviour and structures; 2.4.2 Bioimitation: replication of dynamics and control structures; 2.5 Case Study: limit-cycle biped walking robots to imitate human gait and to inspire the design of wearable exoskeletons; 2.5.1 Introduction; 2.5.2 Why is human walking efficient and stable?
2.5.3 Robot solutions for efficiency and stability2.5.4 Conclusion; Acknowledgements; 2.6 Case Study: MANUS-HAND, mimicking neuromotor control of grasping; 2.6.1 Introduction; 2.6.2 Design of the prosthesis; 2.6.3 MANUS-HAND control architecture; 2.7 Case Study: internal models, CPGs and reflexes to control bipedal walking robots and exoskeletons: the ESBiRRo project; 2.7.1 Introduction; 2.7.2 Motivation for the design of LC bipeds and current limitations; 2.7.3 Biomimetic control for an LC biped walking robot; 2.7.4 Conclusions and future developments; References
3 Kinematics and dynamics of wearable robots3.1 Introduction; 3.2 Robot mechanics: motion equations; 3.2.1 Kinematic analysis; 3.2.2 Dynamic analysis; 3.3 Human biomechanics; 3.3.1 Medical description of human movements; 3.3.2 Arm kinematics; 3.3.3 Leg kinematics; 3.3.4 Kinematic models of the limbs; 3.3.5 Dynamic modelling of the human limbs; 3.4 Kinematic redundancy in exoskeleton systems; 3.4.1 Introduction to kinematic redundancies; 3.4.2 Redundancies in human-exoskeleton systems; 3.5 Case Study: a biomimetic, kinematically compliant knee joint modelled by a four-bar linkage
3.5.1 Introduction
Record Nr. UNINA-9910830678103321
Chichester, England ; ; Hoboken, NJ, : Wiley, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wearable robots [[electronic resource] ] : biomechatronic exoskeletons / / edited by José L. Pons
Wearable robots [[electronic resource] ] : biomechatronic exoskeletons / / edited by José L. Pons
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : Wiley, c2008
Descrizione fisica 1 online resource (360 p.)
Disciplina 617.9
617/.9
629.892
Altri autori (Persone) PonsJosé L
Soggetto topico Robotics in medicine
Prosthesis
ISBN 1-281-32006-4
9786611320065
0-470-98766-9
0-470-98765-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Wearable Robots; Contents; Foreword; Preface; List of Contributors; 1 Introduction to wearable robotics; 1.1 Wearable robots and exoskeletons; 1.1.1 Dual human-robot interaction in wearable robotics; 1.1.2 A historical note; 1.1.3 Exoskeletons: an instance of wearable robots; 1.2 The role of bioinspiration and biomechatronics in wearable robots; 1.2.1 Bioinspiration in the design of biomechatronic wearable robots; 1.2.2 Biomechatronic systems in close interaction with biological systems; 1.2.3 Biologically inspired design and optimization procedures
1.3 Technologies involved in robotic exoskeletons1.4 A classification of wearable exoskeletons: application domains; 1.5 Scope of the book; References; 2 Basis for bioinspiration and biomimetism in wearable robots; 2.1 Introduction; 2.2 General principles in biological design; 2.2.1 Optimization of objective functions: energy consumption; 2.2.2 Multifunctionality and adaptability; 2.2.3 Evolution; 2.3 Development of biologically inspired designs; 2.3.1 Biological models; 2.3.2 Neuromotor control structures and mechanisms as models; 2.3.3 Muscular physiology as a model
2.3.4 Sensorimotor mechanisms as a model2.3.5 Biomechanics of human limbs as a model; 2.3.6 Recursive interaction: engineering models explain biological systems; 2.4 Levels of biological inspiration in engineering design; 2.4.1 Biomimetism: replication of observable behaviour and structures; 2.4.2 Bioimitation: replication of dynamics and control structures; 2.5 Case Study: limit-cycle biped walking robots to imitate human gait and to inspire the design of wearable exoskeletons; 2.5.1 Introduction; 2.5.2 Why is human walking efficient and stable?
2.5.3 Robot solutions for efficiency and stability2.5.4 Conclusion; Acknowledgements; 2.6 Case Study: MANUS-HAND, mimicking neuromotor control of grasping; 2.6.1 Introduction; 2.6.2 Design of the prosthesis; 2.6.3 MANUS-HAND control architecture; 2.7 Case Study: internal models, CPGs and reflexes to control bipedal walking robots and exoskeletons: the ESBiRRo project; 2.7.1 Introduction; 2.7.2 Motivation for the design of LC bipeds and current limitations; 2.7.3 Biomimetic control for an LC biped walking robot; 2.7.4 Conclusions and future developments; References
3 Kinematics and dynamics of wearable robots3.1 Introduction; 3.2 Robot mechanics: motion equations; 3.2.1 Kinematic analysis; 3.2.2 Dynamic analysis; 3.3 Human biomechanics; 3.3.1 Medical description of human movements; 3.3.2 Arm kinematics; 3.3.3 Leg kinematics; 3.3.4 Kinematic models of the limbs; 3.3.5 Dynamic modelling of the human limbs; 3.4 Kinematic redundancy in exoskeleton systems; 3.4.1 Introduction to kinematic redundancies; 3.4.2 Redundancies in human-exoskeleton systems; 3.5 Case Study: a biomimetic, kinematically compliant knee joint modelled by a four-bar linkage
3.5.1 Introduction
Record Nr. UNINA-9910841063103321
Chichester, England ; ; Hoboken, NJ, : Wiley, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui