top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Magnetic Resonance Brain Imaging [[electronic resource] ] : Modelling and Data Analysis Using R / / by Jörg Polzehl, Karsten Tabelow
Magnetic Resonance Brain Imaging [[electronic resource] ] : Modelling and Data Analysis Using R / / by Jörg Polzehl, Karsten Tabelow
Autore Polzehl Jörg
Edizione [2nd ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (268 pages)
Disciplina 616.8047548
Altri autori (Persone) TabelowKarsten
Collana Use R!
Soggetto topico Biometry
Radiology
Image processing - Digital techniques
Computer vision
Mathematical statistics - Data processing
Signal processing
Biostatistics
Computer Imaging, Vision, Pattern Recognition and Graphics
Statistics and Computing
Signal, Speech and Image Processing
ISBN 3-031-38949-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface to the Second Edition -- Preface to First Edition -- Contents -- Acronyms -- 1 Introduction -- 2 Magnetic Resonance Imaging in a Nutshell -- 2.1 The Principles of Magnetic Resonance Imaging -- 2.1.1 The Zeeman effect for Atomic Nuclei -- 2.1.2 Macroscopic Magnetization Vector -- 2.1.3 Spin Excitation and Relaxation -- 2.1.4 Spatial Localization and Pulse Sequences -- 2.1.5 MR Image Formation and Parallel Imaging -- 2.2 Special MR Imaging Modalities -- 2.2.1 Functional Magnetic Resonance Imaging (fMRI) -- 2.2.2 Diffusion Weighted Magnetic Resonance Imaging(dMRI) -- 2.2.3 Multi-parameter Mapping (MPM) -- 2.2.4 Inversion Recovery Magnetic Resonance Imaging (IR-MRI) -- 3 Medical Imaging Data Formats -- 3.1 DICOM Format -- 3.2 ANALYZE and NIfTI format -- 3.3 The BIDS Standard for Neuroimaging Data -- 4 Functional Magnetic Resonance Imaging -- 4.1 Prerequisites for Running the Code in This Chapter -- 4.2 Pre-processing fMRI Data -- 4.2.1 Example Data -- Functional MRI Data on Visual Object Recognition (ds000105) -- Multi-subject and Multi-modal Neuroimaging Dataset on Face Processing (ds000117) -- Multi-modal Longitudinal Study of a Single Subject (ds000031) -- 4.2.2 Slice Time Correction -- 4.2.3 Motion Correction -- 4.2.4 Registration -- 4.2.5 Normalization -- 4.2.6 Brain Mask -- 4.2.7 Brain Tissue Segmentation -- 4.2.8 Using Brain Atlas Information -- 4.2.9 Spatial Smoothing -- 4.3 The General Linear Model (GLM) for fMRI -- 4.3.1 Modeling the BOLD Signal -- 4.3.2 The Linear Model -- 4.3.3 Simulated fMRI Data -- 4.4 Signal Detection in Single-Subject Experiments -- 4.4.1 Voxelwise Signal Detection and the Multiple Comparison Problem -- 4.4.2 Bonferroni Correction -- 4.4.3 Random Field Theory -- 4.4.4 False Discovery Rate (FDR) -- 4.4.5 Cluster Thresholds -- 4.4.6 Permutation Tests -- 4.5 Adaptive Smoothing in fMRI.
4.5.1 Analyzing fMRI Experiments with Structural Adaptive Smoothing Procedures -- 4.5.2 Structural Adaptive Segmentation in fMRI -- 4.6 Other Approaches for fMRI Analysis Using R -- 4.6.1 Multivariate fMRI Analysis -- 4.6.2 Independent Component Analysis (ICA) -- 4.7 Functional Connectivity for Resting-State fMRI -- 5 Diffusion-Weighted Imaging -- 5.1 Prerequisites -- 5.2 Diffusion-Weighted MRI Data -- 5.2.1 The Diffusion Equation and MRI -- 5.2.2 Example Data -- 5.2.3 Data Pre-processing -- 5.2.4 Reading Pre-processed Data -- 5.2.5 Basic Data Properties -- 5.2.6 Definition of a Brain Mask -- 5.2.7 Characterization of Noise in Diffusion-Weighted MRI -- 5.3 Modeling Diffusion-Weighted MRI Data -- 5.3.1 The Apparent Diffusion Coefficient (ADC) -- 5.3.2 Diffusion Tensor Imaging (DTI) -- 5.3.3 Diffusion Kurtosis Imaging (DKI) -- 5.3.4 The Orientation Distribution Function -- 5.3.5 Tensor Mixture Models -- 5.4 Smoothing Diffusion-Weighted Data -- 5.4.1 Effects of Gaussian Filtering -- 5.4.2 Multi-shell Position-Orientation Adaptive Smoothing (msPOAS) -- 5.5 Fiber Tracking Methods -- 5.6 Structural Connectivity -- 6 Multiparameter Mapping -- 6.1 Prerequisites -- 6.2 Multiparameter Mapping -- 6.2.1 Signal Model in FLASH Sequences -- 6.2.2 Data from the Multiparameter Mapping (MPM) Protocol -- 6.2.3 Reparameterization of the Signal Model by ESTATICS -- 6.2.4 Correction for Instrumental B1-Bias -- 6.2.5 Correction for the Bias Induced by Low SNR -- 6.2.6 Structural Adaptive Smoothing of Relaxometry Data -- 7 Inversion Recovery Magnetic Resonance Imaging -- 7.1 Prerequisites -- 7.2 Tissue Porosity Estimation by Inversion Recovery MRI-based Experiments -- 7.3 Generating a Simulated Dataset -- 7.4 Estimation of Parameters from IR MRI Data in a Mixture Model -- A Smoothing Techniques for Imaging Problems -- A.1 Non-parametric Regression -- A.1.1 Kernel Smoothing.
A.2 Adaptive Weigths Smoothing -- A.2.1 Local Constant Likelihood Models -- A.2.2 Patch-Wise Adaptive Weights Smoothing (PAWS) -- A.3 Special Settings in Neuroimaging Experiments -- A.3.1 Simultaneous Mean and Variance Estimation -- A.3.2 Vector Valued Data -- A.3.3 Diffusion Data -- A.3.4 Tensor-Valued Data -- A.3.5 Model-Driven Smoothing of Observed Images -- B Resources for Neuroimaging in R -- B.1 An Overview on Selected R Packages for Neuroimaging -- B.2 Open Neuroimaging Data Archives -- C Data, Software and Hardware Resources -- C.1 How to Get the Example Code -- C.2 Packages and Software to Install -- C.3 How to Acquire and Organize the Example Data -- C.3.1 Data from the `Kirby21' Reproducibility Study -- C.3.2 Data from OpenNeuro -- C.3.3 DICOM Example Data -- C.3.4 MPM Data Example -- C.3.5 Atlas Data -- C.4 How to Obtain Precomputed Results -- C.5 System Requirements -- References -- Index.
Record Nr. UNINA-9910751383603321
Polzehl Jörg  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Magnetic Resonance Brain Imaging : Modeling and Data Analysis Using R / / by Jörg Polzehl, Karsten Tabelow
Magnetic Resonance Brain Imaging : Modeling and Data Analysis Using R / / by Jörg Polzehl, Karsten Tabelow
Autore Polzehl Jörg
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XVIII, 231 p. 77 illus., 48 illus. in color.)
Disciplina 519.5
Collana Use R!
Soggetto topico Statistics 
Radiology
Optical data processing
Biostatistics
Signal processing
Image processing
Speech processing systems
R (Computer program language)
Statistics for Life Sciences, Medicine, Health Sciences
Imaging / Radiology
Computer Imaging, Vision, Pattern Recognition and Graphics
Statistics and Computing/Statistics Programs
Signal, Image and Speech Processing
ISBN 3-030-29184-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Introduction -- 2 Magnetic Resonance Imaging in a nutshell -- 3 Medical imaging data formats -- 4 Functional Magnetic Resonance Imaging -- 5 DiffusionWeighted Imaging -- 6 Multi Parameter Mapping -- Appendix -- References -- Index.
Record Nr. UNINA-9910349319403321
Polzehl Jörg  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui