top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Adaptive approximation based control [[electronic resource] ] : unifying neural, fuzzy and traditional adaptive approximation approaches / / Jay A. Farrell, Marios M. Polycarpou
Adaptive approximation based control [[electronic resource] ] : unifying neural, fuzzy and traditional adaptive approximation approaches / / Jay A. Farrell, Marios M. Polycarpou
Autore Farrell Jay
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (440 p.)
Disciplina 629.8
Altri autori (Persone) PolycarpouMarios
Collana Wiley series in adaptive and learning systems for signal processing, communication and control
Soggetto topico Adaptive control systems
Feedback control systems
Soggetto genere / forma Electronic books.
ISBN 1-280-44804-0
9786610448043
0-470-32501-1
0-471-78181-9
0-471-78180-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ADAPTIVE APPROXIMATlON BASED CONTROL; CONTENTS; Preface; 1 Introduction; 1.1 Systems and Control Terminology; 1.2 Nonlinear Systems; 1.3 Feedback Control Approaches; 1.3.1 Linear Design; 1.3.2 Adaptive Linear Design; 1.3.3 Nonlinear Design; 1.3.4 Adaptive Approximation Based Design; 1.3.5 Example Summary; 1.4 Components of Approximation Based Control; 1.4.1 Control Architecture; 1.4.2 Function Approximator; 1.4.3 Stable Training Algorithm; 1.5 Discussion and Philosophical Comments; 1.6 Exercises and Design Problems; 2 Approximation Theory; 2.1 Motivating Example; 2.2 Interpolation
2.3 Function Approximation2.3.1 Offline (Batch) Function Approximation; 2.3.2 Adaptive Function Approximation; 2.4 Approximator Properties; 2.4.1 Parameter (Non) Linearity; 2.4.2 Classical Approximation Results; 2.4.3 Network Approximators; 2.4.4 Nodal Processors; 2.4.5 Universal Approximator; 2.4.6 Best Approximator Property; 2.4.7 Generalization; 2.4.8 Extent of Influence Function Support; 2.4.9 Approximator Transparency; 2.4.10 Haar Conditions; 2.4.11 Multivariable Approximation by Tensor Products; 2.5 Summary; 2.6 Exercises and Design Problems; 3 Approximation Structures; 3.1 Model Types
3.1.1 Physically Based Models3.1.2 Structure (Model) Free Approximation; 3.1.3 Function Approximation Structures; 3.2 Polynomials; 3.2.1 Description; 3.2.2 Properties; 3.3 Splines; 3.3.1 Description; 3.3.2 Properties; 3.4 Radial Basis Functions; 3.4.1 Description; 3.4.2 Properties; 3.5 Cerebellar Model Articulation Controller; 3.5.1 Description; 3.5.2 Properties; 3.6 Multilayer Perceptron; 3.6.1 Description; 3.6.2 Properties; 3.7 Fuzzy Approximation; 3.7.1 Description; 3.7.2 Takagi-Sugeno Fuzzy Systems; 3.7.3 Properties; 3.8 Wavelets; 3.8.1 Multiresolution Analysis (MRA); 3.8.2 MRA Properties
3.9 Further Reading3.10 Exercises and Design Problems; 4 Parameter Estimation Methods; 4.1 Formulation for Adaptive Approximation; 4.1.1 Illustrative Example; 4.1.2 Motivating Simulation Examples; 4.1.3 Problem Statement; 4.1.4 Discussion of Issues in Parametric Estimation; 4.2 Derivation of Parametric Models; 4.2.1 Problem Formulation for Full-State Measurement; 4.2.2 Filtering Techniques; 4.2.3 SPR Filtering; 4.2.4 Linearly Parameterized Approximators; 4.2.5 Parametric Models in State Space Form; 4.2.6 Parametric Models of Discrete-Time Systems
4.2.7 Parametric Models of Input-Output Systems4.3 Design of Online Learning Schemes; 4.3.1 Error Filtering Online Learning (EFOL) Scheme; 4.3.2 Regressor Filtering Online Learning (RFOL) Scheme; 4.4 Continuous-Time Parameter Estimation; 4.4.1 Lyapunov-Based Algorithms; 4.4.2 Optimization Methods; 4.4.3 Summary; 4.5 Online Learning: Analysis; 4.5.1 Analysis of LIP EFOL Scheme with Lyapunov Synthesis Method; 4.5.2 Analysis of LIP RFOL Scheme with the Gradient Algorithm; 4.5.3 Analysis of LIP RFOL Scheme with RLS Algorithm; 4.5.4 Persistency of Excitation and Parameter Convergence
4.6 Robust Learning Algorithms
Record Nr. UNINA-9910143397203321
Farrell Jay  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adaptive approximation based control [[electronic resource] ] : unifying neural, fuzzy and traditional adaptive approximation approaches / / Jay A. Farrell, Marios M. Polycarpou
Adaptive approximation based control [[electronic resource] ] : unifying neural, fuzzy and traditional adaptive approximation approaches / / Jay A. Farrell, Marios M. Polycarpou
Autore Farrell Jay
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (440 p.)
Disciplina 629.8
Altri autori (Persone) PolycarpouMarios
Collana Wiley series in adaptive and learning systems for signal processing, communication and control
Soggetto topico Adaptive control systems
Feedback control systems
ISBN 1-280-44804-0
9786610448043
0-470-32501-1
0-471-78181-9
0-471-78180-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ADAPTIVE APPROXIMATlON BASED CONTROL; CONTENTS; Preface; 1 Introduction; 1.1 Systems and Control Terminology; 1.2 Nonlinear Systems; 1.3 Feedback Control Approaches; 1.3.1 Linear Design; 1.3.2 Adaptive Linear Design; 1.3.3 Nonlinear Design; 1.3.4 Adaptive Approximation Based Design; 1.3.5 Example Summary; 1.4 Components of Approximation Based Control; 1.4.1 Control Architecture; 1.4.2 Function Approximator; 1.4.3 Stable Training Algorithm; 1.5 Discussion and Philosophical Comments; 1.6 Exercises and Design Problems; 2 Approximation Theory; 2.1 Motivating Example; 2.2 Interpolation
2.3 Function Approximation2.3.1 Offline (Batch) Function Approximation; 2.3.2 Adaptive Function Approximation; 2.4 Approximator Properties; 2.4.1 Parameter (Non) Linearity; 2.4.2 Classical Approximation Results; 2.4.3 Network Approximators; 2.4.4 Nodal Processors; 2.4.5 Universal Approximator; 2.4.6 Best Approximator Property; 2.4.7 Generalization; 2.4.8 Extent of Influence Function Support; 2.4.9 Approximator Transparency; 2.4.10 Haar Conditions; 2.4.11 Multivariable Approximation by Tensor Products; 2.5 Summary; 2.6 Exercises and Design Problems; 3 Approximation Structures; 3.1 Model Types
3.1.1 Physically Based Models3.1.2 Structure (Model) Free Approximation; 3.1.3 Function Approximation Structures; 3.2 Polynomials; 3.2.1 Description; 3.2.2 Properties; 3.3 Splines; 3.3.1 Description; 3.3.2 Properties; 3.4 Radial Basis Functions; 3.4.1 Description; 3.4.2 Properties; 3.5 Cerebellar Model Articulation Controller; 3.5.1 Description; 3.5.2 Properties; 3.6 Multilayer Perceptron; 3.6.1 Description; 3.6.2 Properties; 3.7 Fuzzy Approximation; 3.7.1 Description; 3.7.2 Takagi-Sugeno Fuzzy Systems; 3.7.3 Properties; 3.8 Wavelets; 3.8.1 Multiresolution Analysis (MRA); 3.8.2 MRA Properties
3.9 Further Reading3.10 Exercises and Design Problems; 4 Parameter Estimation Methods; 4.1 Formulation for Adaptive Approximation; 4.1.1 Illustrative Example; 4.1.2 Motivating Simulation Examples; 4.1.3 Problem Statement; 4.1.4 Discussion of Issues in Parametric Estimation; 4.2 Derivation of Parametric Models; 4.2.1 Problem Formulation for Full-State Measurement; 4.2.2 Filtering Techniques; 4.2.3 SPR Filtering; 4.2.4 Linearly Parameterized Approximators; 4.2.5 Parametric Models in State Space Form; 4.2.6 Parametric Models of Discrete-Time Systems
4.2.7 Parametric Models of Input-Output Systems4.3 Design of Online Learning Schemes; 4.3.1 Error Filtering Online Learning (EFOL) Scheme; 4.3.2 Regressor Filtering Online Learning (RFOL) Scheme; 4.4 Continuous-Time Parameter Estimation; 4.4.1 Lyapunov-Based Algorithms; 4.4.2 Optimization Methods; 4.4.3 Summary; 4.5 Online Learning: Analysis; 4.5.1 Analysis of LIP EFOL Scheme with Lyapunov Synthesis Method; 4.5.2 Analysis of LIP RFOL Scheme with the Gradient Algorithm; 4.5.3 Analysis of LIP RFOL Scheme with RLS Algorithm; 4.5.4 Persistency of Excitation and Parameter Convergence
4.6 Robust Learning Algorithms
Record Nr. UNINA-9910830081303321
Farrell Jay  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adaptive approximation based control : unifying neural, fuzzy and traditional adaptive approximation approaches / / Jay A. Farrell, Marios M. Polycarpou
Adaptive approximation based control : unifying neural, fuzzy and traditional adaptive approximation approaches / / Jay A. Farrell, Marios M. Polycarpou
Autore Farrell Jay
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (440 p.)
Disciplina 629.8/36
Altri autori (Persone) PolycarpouMarios
Collana Wiley series in adaptive and learning systems for signal processing, communication and control
Soggetto topico Adaptive control systems
Feedback control systems
ISBN 1-280-44804-0
9786610448043
0-470-32501-1
0-471-78181-9
0-471-78180-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ADAPTIVE APPROXIMATlON BASED CONTROL; CONTENTS; Preface; 1 Introduction; 1.1 Systems and Control Terminology; 1.2 Nonlinear Systems; 1.3 Feedback Control Approaches; 1.3.1 Linear Design; 1.3.2 Adaptive Linear Design; 1.3.3 Nonlinear Design; 1.3.4 Adaptive Approximation Based Design; 1.3.5 Example Summary; 1.4 Components of Approximation Based Control; 1.4.1 Control Architecture; 1.4.2 Function Approximator; 1.4.3 Stable Training Algorithm; 1.5 Discussion and Philosophical Comments; 1.6 Exercises and Design Problems; 2 Approximation Theory; 2.1 Motivating Example; 2.2 Interpolation
2.3 Function Approximation2.3.1 Offline (Batch) Function Approximation; 2.3.2 Adaptive Function Approximation; 2.4 Approximator Properties; 2.4.1 Parameter (Non) Linearity; 2.4.2 Classical Approximation Results; 2.4.3 Network Approximators; 2.4.4 Nodal Processors; 2.4.5 Universal Approximator; 2.4.6 Best Approximator Property; 2.4.7 Generalization; 2.4.8 Extent of Influence Function Support; 2.4.9 Approximator Transparency; 2.4.10 Haar Conditions; 2.4.11 Multivariable Approximation by Tensor Products; 2.5 Summary; 2.6 Exercises and Design Problems; 3 Approximation Structures; 3.1 Model Types
3.1.1 Physically Based Models3.1.2 Structure (Model) Free Approximation; 3.1.3 Function Approximation Structures; 3.2 Polynomials; 3.2.1 Description; 3.2.2 Properties; 3.3 Splines; 3.3.1 Description; 3.3.2 Properties; 3.4 Radial Basis Functions; 3.4.1 Description; 3.4.2 Properties; 3.5 Cerebellar Model Articulation Controller; 3.5.1 Description; 3.5.2 Properties; 3.6 Multilayer Perceptron; 3.6.1 Description; 3.6.2 Properties; 3.7 Fuzzy Approximation; 3.7.1 Description; 3.7.2 Takagi-Sugeno Fuzzy Systems; 3.7.3 Properties; 3.8 Wavelets; 3.8.1 Multiresolution Analysis (MRA); 3.8.2 MRA Properties
3.9 Further Reading3.10 Exercises and Design Problems; 4 Parameter Estimation Methods; 4.1 Formulation for Adaptive Approximation; 4.1.1 Illustrative Example; 4.1.2 Motivating Simulation Examples; 4.1.3 Problem Statement; 4.1.4 Discussion of Issues in Parametric Estimation; 4.2 Derivation of Parametric Models; 4.2.1 Problem Formulation for Full-State Measurement; 4.2.2 Filtering Techniques; 4.2.3 SPR Filtering; 4.2.4 Linearly Parameterized Approximators; 4.2.5 Parametric Models in State Space Form; 4.2.6 Parametric Models of Discrete-Time Systems
4.2.7 Parametric Models of Input-Output Systems4.3 Design of Online Learning Schemes; 4.3.1 Error Filtering Online Learning (EFOL) Scheme; 4.3.2 Regressor Filtering Online Learning (RFOL) Scheme; 4.4 Continuous-Time Parameter Estimation; 4.4.1 Lyapunov-Based Algorithms; 4.4.2 Optimization Methods; 4.4.3 Summary; 4.5 Online Learning: Analysis; 4.5.1 Analysis of LIP EFOL Scheme with Lyapunov Synthesis Method; 4.5.2 Analysis of LIP RFOL Scheme with the Gradient Algorithm; 4.5.3 Analysis of LIP RFOL Scheme with RLS Algorithm; 4.5.4 Persistency of Excitation and Parameter Convergence
4.6 Robust Learning Algorithms
Record Nr. UNINA-9910876607803321
Farrell Jay  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Neural Networks -- ISNN 2011 [[electronic resource] ] : 8th International Symposium on Neural Networks, ISNN 2011, Guilin, China, May 29--June 1, 2011, Proceedings, Part II / / edited by Derong Liu, Huaguang Zhang, Marios Polycarpou, Cesare Alippi, Haibo He
Advances in Neural Networks -- ISNN 2011 [[electronic resource] ] : 8th International Symposium on Neural Networks, ISNN 2011, Guilin, China, May 29--June 1, 2011, Proceedings, Part II / / edited by Derong Liu, Huaguang Zhang, Marios Polycarpou, Cesare Alippi, Haibo He
Edizione [1st ed. 2011.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Descrizione fisica 1 online resource (XXII, 646 p.)
Disciplina 004.0151
Collana Theoretical Computer Science and General Issues
Soggetto topico Computer science
Computer networks
Algorithms
Computer science—Mathematics
Discrete mathematics
Artificial intelligence
Pattern recognition systems
Theory of Computation
Computer Communication Networks
Discrete Mathematics in Computer Science
Artificial Intelligence
Automated Pattern Recognition
ISBN 3-642-21090-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996465667903316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advances in Neural Networks -- ISNN 2011 [[electronic resource] ] : 8th International Symposium on Neural Networks, ISNN 2011, Guilin, China, May 29--June 1, 2011, Proceedings Part I / / edited by Derong Liu, Huaguang Zhang, Marios Polycarpou, Cesare Alippi, Haibo He
Advances in Neural Networks -- ISNN 2011 [[electronic resource] ] : 8th International Symposium on Neural Networks, ISNN 2011, Guilin, China, May 29--June 1, 2011, Proceedings Part I / / edited by Derong Liu, Huaguang Zhang, Marios Polycarpou, Cesare Alippi, Haibo He
Edizione [1st ed. 2011.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Descrizione fisica 1 online resource (XXXIV, 634 p. 39 illus.)
Disciplina 004.0151
Collana Theoretical Computer Science and General Issues
Soggetto topico Computer science
Computer networks
Algorithms
Computer science—Mathematics
Discrete mathematics
Artificial intelligence
Pattern recognition systems
Theory of Computation
Computer Communication Networks
Discrete Mathematics in Computer Science
Artificial Intelligence
Automated Pattern Recognition
ISBN 3-642-21105-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996465665403316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advances in Neural Networks -- ISNN 2011 [[electronic resource] ] : 8th International Symposium on Neural Networks, ISNN 2011, Guilin, China, May 29--June 1, 2011, Prodceedings, Part III / / edited by Derong Liu, Huaguang Zhang, Marios Polycarpou, Cesare Alippi, Haibo He
Advances in Neural Networks -- ISNN 2011 [[electronic resource] ] : 8th International Symposium on Neural Networks, ISNN 2011, Guilin, China, May 29--June 1, 2011, Prodceedings, Part III / / edited by Derong Liu, Huaguang Zhang, Marios Polycarpou, Cesare Alippi, Haibo He
Edizione [1st ed. 2011.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Descrizione fisica 1 online resource (XXII, 642 p.)
Disciplina 004.0151
Collana Theoretical Computer Science and General Issues
Soggetto topico Computer science
Computer networks
Algorithms
Computer science—Mathematics
Discrete mathematics
Artificial intelligence
Pattern recognition systems
Theory of Computation
Computer Communication Networks
Discrete Mathematics in Computer Science
Artificial Intelligence
Automated Pattern Recognition
ISBN 3-642-21111-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996465651003316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Artificial neural networks ICANN 2009 [[electronic resource] ] : 19th International Conference, Limassol, Cyprus, September 14-17, 2009, proceedings . Part I / / Cesare Alippi, Marios Polycarpou, Christos Panayiotou, Georgios Ellinas, (eds.)
Artificial neural networks ICANN 2009 [[electronic resource] ] : 19th International Conference, Limassol, Cyprus, September 14-17, 2009, proceedings . Part I / / Cesare Alippi, Marios Polycarpou, Christos Panayiotou, Georgios Ellinas, (eds.)
Autore Alippi Cesare
Edizione [1st ed. 2009.]
Pubbl/distr/stampa Berlin ; ; Heidelberg, : Springer-Verlag, 2009
Descrizione fisica 1 online resource (XXXIII, 1030 p.)
Disciplina 006.3
Altri autori (Persone) PolycarpouMarios
PanayiotouChristos
EllinasGeorgios
Collana Lecture notes in computer science
Soggetto topico Neural networks (Computer science)
Artificial intelligence
ISBN 3-642-04274-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Learning Algorithms -- Computational Neuroscience -- Hardware Implementations and Embedded Systems -- Self Organization -- Intelligent Control and Adaptive Systems -- Neural and Hybrid Architectures -- Support Vector Machine -- Recurrent Neural Network.
Record Nr. UNINA-9910484680703321
Alippi Cesare  
Berlin ; ; Heidelberg, : Springer-Verlag, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hybrid Artificial Intelligence Systems [[electronic resource] ] : 9th International Conference, HAIS 2014, Salamanca, Spain, June 11-13, 2014, Proceedings / / edited by Marios Polycarpou, André C.P.L.F. de Carvalho, Jeng-Shyang Pan, Michał Woźniak, Héctor Quintián, Emilio Corchado
Hybrid Artificial Intelligence Systems [[electronic resource] ] : 9th International Conference, HAIS 2014, Salamanca, Spain, June 11-13, 2014, Proceedings / / edited by Marios Polycarpou, André C.P.L.F. de Carvalho, Jeng-Shyang Pan, Michał Woźniak, Héctor Quintián, Emilio Corchado
Edizione [1st ed. 2014.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Descrizione fisica 1 online resource (XVIII, 710 p. 253 illus.)
Disciplina 006.3
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Algorithms
Application software
Computers
Pattern recognition
Optical data processing
Artificial Intelligence
Algorithm Analysis and Problem Complexity
Information Systems Applications (incl. Internet)
Computation by Abstract Devices
Pattern Recognition
Image Processing and Computer Vision
ISBN 3-319-07617-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto HAIS Applications -- Data Mining and Knowledge Discovery -- Video and Image Analysis -- Bio-inspired Models and Evolutionary Computation -- Learning Algorithms -- Hybrid Intelligent Systems for Data Mining and Applications -- Classification and Cluster Analysis.
Record Nr. UNISA-996217779303316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Hybrid Artificial Intelligence Systems : 9th International Conference, HAIS 2014, Salamanca, Spain, June 11-13, 2014, Proceedings / / edited by Marios Polycarpou, André C.P.L.F. de Carvalho, Jeng-Shyang Pan, Michał Woźniak, Héctor Quintián, Emilio Corchado
Hybrid Artificial Intelligence Systems : 9th International Conference, HAIS 2014, Salamanca, Spain, June 11-13, 2014, Proceedings / / edited by Marios Polycarpou, André C.P.L.F. de Carvalho, Jeng-Shyang Pan, Michał Woźniak, Héctor Quintián, Emilio Corchado
Edizione [1st ed. 2014.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Descrizione fisica 1 online resource (XVIII, 710 p. 253 illus.)
Disciplina 006.3
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Algorithms
Application software
Computers
Pattern recognition
Optical data processing
Artificial Intelligence
Algorithm Analysis and Problem Complexity
Information Systems Applications (incl. Internet)
Computation by Abstract Devices
Pattern Recognition
Image Processing and Computer Vision
ISBN 3-319-07617-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto HAIS Applications -- Data Mining and Knowledge Discovery -- Video and Image Analysis -- Bio-inspired Models and Evolutionary Computation -- Learning Algorithms -- Hybrid Intelligent Systems for Data Mining and Applications -- Classification and Cluster Analysis.
Record Nr. UNINA-9910484252703321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent Monitoring, Control, and Security of Critical Infrastructure Systems / / edited by Elias Kyriakides, Marios Polycarpou
Intelligent Monitoring, Control, and Security of Critical Infrastructure Systems / / edited by Elias Kyriakides, Marios Polycarpou
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (XII, 359 p. 144 illus., 31 illus. in color.)
Disciplina 620
Collana Studies in Computational Intelligence
Soggetto topico Computational intelligence
Electrical engineering
Quality control
Reliability
Industrial safety
Computational Intelligence
Communications Engineering, Networks
Quality Control, Reliability, Safety and Risk
ISBN 3-662-44160-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Critical infrastructure systems – basic principles of monitoring, control, and security -- Electric Power Systems.-Telecommunication Networks -- Water Distribution Networks Transportation Systems -- Algorithms and tools for intelligent monitoring of CIS -- Algorithms and tools for intelligent control of CIS -- Algorithms and tools for risk/impact evaluation in critical infrastructures -- Infrastructure interdependencies – modeling and analysis -- Fault diagnosis and fault tolerant control in CIS -- Wireless sensor network based technologies for CIS -- System-of-Systems approach -- Conclusions.
Record Nr. UNINA-9910299690303321
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui