Nuclear electronics [[electronic resource] ] : superconducting detectors and processing techniques / / Vladimir Polushkin |
Autore | Polushkin Vladimir |
Pubbl/distr/stampa | Chichester, West Sussex, England ; ; Hoboken, NJ, : J. Wiley & Sons, c2004 |
Descrizione fisica | 1 online resource (404 p.) |
Disciplina |
539.77
621.35 |
Soggetto topico |
Superconductors
Nuclear counters Molecular electronics Nanotechnology |
ISBN |
0-470-85762-5
1-280-27074-8 0-470-85769-2 9786610270743 0-470-30007-8 1-280-27076-4 9786610270767 0-470-33651-X 0-470-85768-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Nuclear Electronics; Contents; Preface; 1 Detection Methods with Cryogenic Particle and Radiation Sensors; 1.1 Quasiparticle detectors: Interaction of nuclear radiation with superconductors; 1.2 Superconducting tunnel junction detectors; 1.3 Microcalorimeters based on transition edge sensor; 1.4 Other cryogenic detectors; 2 Front-end Read-out Electronic Circuits; 2.1 FET transconductance preamplifiers; 2.2 Dynamics and noise of JFET amplifiers; 2.3 SQUID current amplifier; 2.4 SQUID read-out electronics; 2.5 SQUID amplifier in the small-signal limit (noise)
2.6 SQUID current amplifier in the large-signal limit (dynamics)2.7 SQUID current amplifier at ultralow temperature; 2.8 SQUID voltage amplifier; 3 Energy Resolution (FWHM) of Superconducting Detectors; 3.1 Signal-to-noise ratio, equivalent noise charge and noise linewidth of spectrometers: General formulations; 3.2 Signal-to-noise ratio, ENC, energy resolution at FWHM of Tunnel Junctions; 3.3 Noise equivalent power, energy resolution of superconductor microcalorimeters; 3.4 Dynamics and noise of time-variant detector systems 3.5 Signal-to-noise ratio of detector arrays with multiplexed read-out4 Pulse Processing Electronics; 4.1 Pulse processing techniques; 4.2 Analogue-to-digital conversion; 4.3 Digital rise (fall) time discrimination; 4.4 Superconductor digital spectrometer; 4.5 Selected topics on the hardware design; 5 Applications of Systems Based on Superconducting Detectors; 5.1 Electron-Probe Nanoanalysis with Superconductor detectors; 5.2 Biopolymer mass spectrometer; 6 Selected Topics of Analysis and Synthesis of Detector Systems; 6.1 Analogue electronic circuitry analysis and design principles 6.2 Discrete-time systems and Systems with periodically changing parameters6.3 Inductance calculations of the superconducting structures; Index |
Record Nr. | UNINA-9910829989503321 |
Polushkin Vladimir | ||
Chichester, West Sussex, England ; ; Hoboken, NJ, : J. Wiley & Sons, c2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nuclear electronics : superconducting detectors and processing techniques / / Vladimir Polushkin |
Autore | Polushkin Vladimir |
Pubbl/distr/stampa | Chichester, West Sussex, England ; ; Hoboken, NJ, : J. Wiley & Sons, c2004 |
Descrizione fisica | 1 online resource (404 p.) |
Disciplina | 539.7/7 |
Soggetto topico |
Superconductors
Nuclear counters Molecular electronics Nanotechnology |
ISBN |
0-470-85762-5
1-280-27074-8 0-470-85769-2 9786610270743 0-470-30007-8 1-280-27076-4 9786610270767 0-470-33651-X 0-470-85768-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Nuclear Electronics; Contents; Preface; 1 Detection Methods with Cryogenic Particle and Radiation Sensors; 1.1 Quasiparticle detectors: Interaction of nuclear radiation with superconductors; 1.2 Superconducting tunnel junction detectors; 1.3 Microcalorimeters based on transition edge sensor; 1.4 Other cryogenic detectors; 2 Front-end Read-out Electronic Circuits; 2.1 FET transconductance preamplifiers; 2.2 Dynamics and noise of JFET amplifiers; 2.3 SQUID current amplifier; 2.4 SQUID read-out electronics; 2.5 SQUID amplifier in the small-signal limit (noise)
2.6 SQUID current amplifier in the large-signal limit (dynamics)2.7 SQUID current amplifier at ultralow temperature; 2.8 SQUID voltage amplifier; 3 Energy Resolution (FWHM) of Superconducting Detectors; 3.1 Signal-to-noise ratio, equivalent noise charge and noise linewidth of spectrometers: General formulations; 3.2 Signal-to-noise ratio, ENC, energy resolution at FWHM of Tunnel Junctions; 3.3 Noise equivalent power, energy resolution of superconductor microcalorimeters; 3.4 Dynamics and noise of time-variant detector systems 3.5 Signal-to-noise ratio of detector arrays with multiplexed read-out4 Pulse Processing Electronics; 4.1 Pulse processing techniques; 4.2 Analogue-to-digital conversion; 4.3 Digital rise (fall) time discrimination; 4.4 Superconductor digital spectrometer; 4.5 Selected topics on the hardware design; 5 Applications of Systems Based on Superconducting Detectors; 5.1 Electron-Probe Nanoanalysis with Superconductor detectors; 5.2 Biopolymer mass spectrometer; 6 Selected Topics of Analysis and Synthesis of Detector Systems; 6.1 Analogue electronic circuitry analysis and design principles 6.2 Discrete-time systems and Systems with periodically changing parameters6.3 Inductance calculations of the superconducting structures; Index |
Record Nr. | UNINA-9910876693603321 |
Polushkin Vladimir | ||
Chichester, West Sussex, England ; ; Hoboken, NJ, : J. Wiley & Sons, c2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nuclear Electronics with Quantum Cryogenic Detectors |
Autore | Polushkin Vladimir |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
Descrizione fisica | 1 online resource (448 pages) |
Soggetto genere / forma | Electronic books. |
ISBN |
9781119834694
9781119834687 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface to the Second Edition -- Preface to the First Edition -- Chapter 1 Interaction of the Nuclear Radiation with Detector Absorbers -- Introduction -- 1.1 The Intrinsic Quantum Efficiency of Radiation Detectors -- 1.2 Detection of Charged Particles -- 1.2.1 Light-Charged. Particles -- 1.2.2 The Continuous "Braking" Radiation .(Bremsstrahlung) -- 1.2.3 Backscattering of Charged Particles -- 1.2.4 Heavy-Charged. Particles -- 1.3 Primary Interactions of X- and γ-Ray. Photons with Solid-State. Absorbers -- 1.3.1 Photoelectric Effect -- 1.3.2 Compton Scattering -- 1.3.3 The Pair Production -- 1.3.4 Attenuation of Photon Radiation in Solid-State. Detector Absorbers -- 1.4 Detection of Neutrons with Solid-State. Radiation Sensors -- 1.4.1 10B(n,α)7Li Nuclear Reaction -- 1.4.2 6Li(n,α)3H Nuclear Reaction -- 1.5 Heat Generation in Athermal Quasiparticle Absorbers -- References -- Chapter 2 Radiation Detectors with Superconducting Absorbers -- Introduction -- 2.1 Selected Topics of the Superconductivity Theory -- 2.1.1 The Electron-Phonon. Interaction and Cooper Pairing Mechanisms -- 2.1.2 The Behavior of Superconductors in the Magnetic Field -- 2.1.3 The Tunnel Josephson Junction -- 2.1.4 The Superconducting Transmission Line: The Kinetic Inductance -- 2.2 Superconducting Absorbers: The Down-Conversion. of Particle Energy and Intrinsic Energy Resolution -- 2.2.1 The Energy Down-Conversion. Process in Superconducting Absorbers -- 2.2.2 The Intrinsic Energy Resolution of Quasiparticle Detectors with Superconducting Absorbers -- 2.3 Transport in the Nonequilibrium Superconductors: Incomplete Charge Collection Mechanisms -- 2.3.1 The Recombination Time of Quasiparticles in Superconductor Absorbers -- 2.3.2 The Rothwarf-Taylor (R-T) Phenomenological Framework.
2.3.3 The Diffusion of Quasiparticles in Thin-Film. Superconducting Absorbers: Incomplete Charge Collection -- 2.3.4 Noise Equivalent Power (NEP) of Superconducting Absorbers -- 2.4 Quasiparticle Radiation Detectors with Superconducting Tunnel Junction (STJ) Readout -- 2.4.1 The Bandgap Engineering and Fabrication of STJ Detectors -- 2.4.2 The Giaever I-V Curve of the STJs -- 2.4.3 The Tunneling Mechanisms in STJs -- 2.4.4 Pileup and Count Rate Capability of the STJ Detectors -- 2.5 Quasiparticle Radiation Detectors with Microwave Kinetic Inductance Sensors (MKID) -- 2.5.1 The Operating Principle of Microwave Kinetic Inductance Sensors -- 2.5.2 The DROID X-ray. Detector with Microwave Kinetic Inductance Sensor Readout -- 2.6 Integration of STJ Detectors with Microwave SQUID Multiplexed Readout -- 2.6.1 Bandwidth Considerations -- References -- Chapter 3 Radiation Detectors with Normal Metal Absorbers -- Introduction -- 3.1 Spectrometers Based on Transition-Edge. Sensor (TES) Microcalorimeters -- 3.1.1 Fundamentals of TES Design -- 3.1.2 The Electrothermal Feedback in TES Microcalorimeters -- 3.2 TES Microcalorimeters with Microwave SQUID Readout (μMUX): Imaging Cameras -- 3.2.1 The Quantum Efficiency -- 3.2.2 The Energy Resolution -- 3.2.3 The Throughput -- 3.2.4 The Bandwidth Per the Core TES Channel -- 3.3 Hot Electron Microcalorimeter with the NIS Tunnel Junction Thermometer -- References -- Chapter 4 Radiation Detectors with Semiconductor Absorbers -- Introduction -- 4.1 Semiconductor Transport -- 4.1.1 Valence Bond and Energy Band Models -- 4.1.2 Carrier Scattering Mechanisms and Mobility in Semiconductor Bulk Materials -- 4.1.3 Carrier Generation and Recombination (G-R) Processes -- 4.1.4 Effects of the G-R Transport on the Performance of Radiation Detectors. 4.1.5 Tunneling-Assisted. Transport in Semiconductor Materials -- 4.1.6 Tunneling Transport Across the Thin Dielectric Barrier -- 4.1.7 The Semiconductor-Vacuum. Interface: Surface Transport -- 4.2 Macroscopic Modeling of Semiconductor Devices -- 4.2.1 Microscopic Transport Models Based on the Schrödinger Equation -- 4.2.2 The Semiclassical Transport Models -- 4.2.3 The Initial and Boundary Conditions in Device Modeling: The Ramo-Shockley Theorem -- 4.3 Front Windows in Semiconductor Radiation Detectors -- 4.3.1 Entrance Window Based on Schottky Barrier Junction -- 4.3.2 Front Window Based on Metal-Insulator-Semiconductor. (MIS) Junction -- 4.3.3 The p-n Junction-Based. Front Window in Radiation Detectors -- 4.4 Fabrication of Silicon Drift Detectors (SDD) -- 4.4.1 The Epitaxially Grown Ultra-shallow. p+n Junction Entrance Windows -- 4.4.2 The Pure Boron Technology for Ultra-shallow. Entrance Windows -- 4.5 Semiconductor Drift Detectors -- 4.5.1 Semiconductor Detectors: Operation Principle and Performance Specifications -- 4.5.2 The Intrinsic Energy Resolution of Semiconductor Detectors -- 4.5.3 Time Response of SDDs -- 4.6 The Quantum Calorimetric Electron-Hole. Detector with Semiconductor Absorber -- 4.6.1 The Phonon System Dynamics in Semiconductor Materials -- 4.6.2 The Design and Performance of the Quantum Electron-Hole. Detector -- References -- Chapter 5 Front-End. Readout Electronic Circuits for Quantum Cryogenic Detectors -- Introduction -- 5.1 JFET Transconductance Preamplifiers -- 5.1.1 Principles of JFET Transconductance Amplifiers -- 5.1.2 Settling Time of Preamplifiers -- 5.2 Dynamics and Noise of JFET Amplifiers -- 5.2.1 Static and Dynamic Parameters of JFETs -- 5.2.2 Noise Characteristics of JFETs -- 5.2.3 PentaFET: High Precision Reset Mechanism -- 5.2.4 The JFET Cascode Stage. 5.2.5 The Source Follower-Based. Charge-Sensitive. Preamplifier -- 5.2.6 The Differential Stage Based on Matched JFETs -- 5.3 The Low Noise Amplifiers Based on High Electron Mobility Transistor (HEMT) -- 5.4 The dc SQUID Current Amplifiers -- 5.4.1 The dc SQUID as a Superconducting Parametric Amplifier -- 5.4.2 The dc SQUID with an Intermediary Input Transformer -- 5.4.3 The Coupled Energy Resolution of a Double Transformer dc SQUID -- 5.4.4 The dc SQUID Readout Electronics -- 5.4.5 The SQUID with the Digital Bode FLL Controller -- 5.4.6 The dc SQUID Amplifier in the Small-Signal Limit (Noise) -- 5.4.7 SQUID Current Amplifier in the Large Signal Limit (Dynamics) -- 5.4.8 SQUID Current Amplifier in the Large Signal Limit (Noise) -- 5.5 The dc SQUID Current Amplifier at Ultralow Temperature (ULT) -- 5.5.1 A Double-Stage. Amplifier with a Single Front ULT SQUID -- 5.5.2 A Double-Stage. Amplifier with the Front ULT SQUID Array -- 5.6 Microwave SQUID Parametric Amplifiers -- 5.6.1 Operation Principle of Microwave SQUIDs with External Pumping (MSQUIDs) -- 5.6.2 The Nonlinearities in the MSQUID Readout -- 5.6.3 The Flux Ramp Modulation Methodology -- 5.6.4 Performance of MSQUID Current Amplifier -- 5.7 Design Methodology of Analog Circuitries -- 5.7.1 The Laplace Transform: Transfer Functions of Electronic Networks -- 5.7.2 Design of Analog Pulse-Shaping. Filter Cells -- 5.7.3 Design of Low-Pass. Filters -- 5.7.4 Graphical Methods of Analysis and Synthesis in the Frequency Domain -- 5.7.5 The Describing Function of Nonlinear Elements in the Frequency Domain -- 5.7.6 Systems with Synchronous Multipliers -- References -- Chapter 6 The Energy Resolution of Radiation Spectrometers -- Introduction -- 6.1 Signal-to-Noise. Ratio, Equivalent Noise Charge of Radiation Spectrometers: General Definitions. 6.2 Energy Resolution of Quasiparticle Detectors (STJs, SDDs) -- 6.2.1 The Tunnel Junction Coupled to a JFET Transconductance Amplifier -- 6.2.2 Energy Resolution of STJ Sensors Readout with SQUID Current Preamps -- 6.3 Optimal Filtration in Radiation Spectrometers -- 6.4 Energy Resolution of TES Microcalorimeters -- 6.5 Matrix Readout Multiplexing of STJ Detectors -- 6.5.1 Matrix Readout of STJ Sensors with JFET Transconductance Amplifiers -- 6.5.2 Matrix Readout with SQUID Current Amplifiers -- 6.6 Time-Division. Multiplexor (TDM) -- 6.7 Frequency Division Multiplexing with Microwave SQUIDs (μMUX) -- 6.8 Code Division Multiplexing (CDM): Spread-Spectrum. Modulation (SSM) -- References -- Chapter 7 Signal Processing in Radiation Spectrometers -- Introduction -- 7.1 Signal Conditioning Units -- 7.1.1 Overview of the Digital Pulse Processing Architectures -- 7.1.2 AC-Coupled. Digital Spectrometers -- 7.1.3 Digital Pulse Processing with the Moving Window Deconvolution -- 7.1.4 DC-Coupled. Digital Pulse Processors -- 7.1.5 DC-Coupled. Digital Pulse Processors with a Sliding Window Signal Conditioner -- 7.2 Analog-to-Digital. Conversion -- 7.2.1 Analog-to-Digital. Converters: Basic Information -- 7.2.2 The Quantization Noise Model of ADC -- 7.2.3 Nonlinearities of ADC -- 7.2.4 Aperture Time of ADCs -- 7.2.5 Aperture Uncertainty of ADCs -- 7.2.6 Reduction of the Differential Nonlinearity with the Sliding Scale Method -- 7.3 Digital Filtration -- 7.3.1 Z-Transform. Methodology -- 7.3.2 Design of Digital Filters with Z-transform -- 7.3.3 The Stability of Digital Filters -- 7.3.4 Trapezoidal Pulse-Shaping. Digital Filter -- 7.3.5 Moving Average Pulse Processing -- 7.4 Throughput of Digital Spectrometers -- 7.4.1 Pulse Recognition Channel: Pileup Detection -- 7.4.2 Timing Resolution of Digital Spectrometers. 7.4.3 The Pileup Decoding in Digital Pulse Processors. |
Record Nr. | UNINA-9910585975003321 |
Polushkin Vladimir | ||
Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nuclear electronics with quantum cryogenic detectors / / Vladimir Polushkin |
Autore | Polushkin Vladimir |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2022] |
Descrizione fisica | 1 online resource (448 pages) |
Disciplina | 537.623 |
Soggetto topico |
Superconductors
Nuclear counters Semiconductor nuclear counters |
ISBN |
9781119834694
9781119834687 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface to the Second Edition -- Preface to the First Edition -- Chapter 1 Interaction of the Nuclear Radiation with Detector Absorbers -- Introduction -- 1.1 The Intrinsic Quantum Efficiency of Radiation Detectors -- 1.2 Detection of Charged Particles -- 1.2.1 Light-Charged. Particles -- 1.2.2 The Continuous "Braking" Radiation .(Bremsstrahlung) -- 1.2.3 Backscattering of Charged Particles -- 1.2.4 Heavy-Charged. Particles -- 1.3 Primary Interactions of X- and γ-Ray. Photons with Solid-State. Absorbers -- 1.3.1 Photoelectric Effect -- 1.3.2 Compton Scattering -- 1.3.3 The Pair Production -- 1.3.4 Attenuation of Photon Radiation in Solid-State. Detector Absorbers -- 1.4 Detection of Neutrons with Solid-State. Radiation Sensors -- 1.4.1 10B(n,α)7Li Nuclear Reaction -- 1.4.2 6Li(n,α)3H Nuclear Reaction -- 1.5 Heat Generation in Athermal Quasiparticle Absorbers -- References -- Chapter 2 Radiation Detectors with Superconducting Absorbers -- Introduction -- 2.1 Selected Topics of the Superconductivity Theory -- 2.1.1 The Electron-Phonon. Interaction and Cooper Pairing Mechanisms -- 2.1.2 The Behavior of Superconductors in the Magnetic Field -- 2.1.3 The Tunnel Josephson Junction -- 2.1.4 The Superconducting Transmission Line: The Kinetic Inductance -- 2.2 Superconducting Absorbers: The Down-Conversion. of Particle Energy and Intrinsic Energy Resolution -- 2.2.1 The Energy Down-Conversion. Process in Superconducting Absorbers -- 2.2.2 The Intrinsic Energy Resolution of Quasiparticle Detectors with Superconducting Absorbers -- 2.3 Transport in the Nonequilibrium Superconductors: Incomplete Charge Collection Mechanisms -- 2.3.1 The Recombination Time of Quasiparticles in Superconductor Absorbers -- 2.3.2 The Rothwarf-Taylor (R-T) Phenomenological Framework.
2.3.3 The Diffusion of Quasiparticles in Thin-Film. Superconducting Absorbers: Incomplete Charge Collection -- 2.3.4 Noise Equivalent Power (NEP) of Superconducting Absorbers -- 2.4 Quasiparticle Radiation Detectors with Superconducting Tunnel Junction (STJ) Readout -- 2.4.1 The Bandgap Engineering and Fabrication of STJ Detectors -- 2.4.2 The Giaever I-V Curve of the STJs -- 2.4.3 The Tunneling Mechanisms in STJs -- 2.4.4 Pileup and Count Rate Capability of the STJ Detectors -- 2.5 Quasiparticle Radiation Detectors with Microwave Kinetic Inductance Sensors (MKID) -- 2.5.1 The Operating Principle of Microwave Kinetic Inductance Sensors -- 2.5.2 The DROID X-ray. Detector with Microwave Kinetic Inductance Sensor Readout -- 2.6 Integration of STJ Detectors with Microwave SQUID Multiplexed Readout -- 2.6.1 Bandwidth Considerations -- References -- Chapter 3 Radiation Detectors with Normal Metal Absorbers -- Introduction -- 3.1 Spectrometers Based on Transition-Edge. Sensor (TES) Microcalorimeters -- 3.1.1 Fundamentals of TES Design -- 3.1.2 The Electrothermal Feedback in TES Microcalorimeters -- 3.2 TES Microcalorimeters with Microwave SQUID Readout (μMUX): Imaging Cameras -- 3.2.1 The Quantum Efficiency -- 3.2.2 The Energy Resolution -- 3.2.3 The Throughput -- 3.2.4 The Bandwidth Per the Core TES Channel -- 3.3 Hot Electron Microcalorimeter with the NIS Tunnel Junction Thermometer -- References -- Chapter 4 Radiation Detectors with Semiconductor Absorbers -- Introduction -- 4.1 Semiconductor Transport -- 4.1.1 Valence Bond and Energy Band Models -- 4.1.2 Carrier Scattering Mechanisms and Mobility in Semiconductor Bulk Materials -- 4.1.3 Carrier Generation and Recombination (G-R) Processes -- 4.1.4 Effects of the G-R Transport on the Performance of Radiation Detectors. 4.1.5 Tunneling-Assisted. Transport in Semiconductor Materials -- 4.1.6 Tunneling Transport Across the Thin Dielectric Barrier -- 4.1.7 The Semiconductor-Vacuum. Interface: Surface Transport -- 4.2 Macroscopic Modeling of Semiconductor Devices -- 4.2.1 Microscopic Transport Models Based on the Schrödinger Equation -- 4.2.2 The Semiclassical Transport Models -- 4.2.3 The Initial and Boundary Conditions in Device Modeling: The Ramo-Shockley Theorem -- 4.3 Front Windows in Semiconductor Radiation Detectors -- 4.3.1 Entrance Window Based on Schottky Barrier Junction -- 4.3.2 Front Window Based on Metal-Insulator-Semiconductor. (MIS) Junction -- 4.3.3 The p-n Junction-Based. Front Window in Radiation Detectors -- 4.4 Fabrication of Silicon Drift Detectors (SDD) -- 4.4.1 The Epitaxially Grown Ultra-shallow. p+n Junction Entrance Windows -- 4.4.2 The Pure Boron Technology for Ultra-shallow. Entrance Windows -- 4.5 Semiconductor Drift Detectors -- 4.5.1 Semiconductor Detectors: Operation Principle and Performance Specifications -- 4.5.2 The Intrinsic Energy Resolution of Semiconductor Detectors -- 4.5.3 Time Response of SDDs -- 4.6 The Quantum Calorimetric Electron-Hole. Detector with Semiconductor Absorber -- 4.6.1 The Phonon System Dynamics in Semiconductor Materials -- 4.6.2 The Design and Performance of the Quantum Electron-Hole. Detector -- References -- Chapter 5 Front-End. Readout Electronic Circuits for Quantum Cryogenic Detectors -- Introduction -- 5.1 JFET Transconductance Preamplifiers -- 5.1.1 Principles of JFET Transconductance Amplifiers -- 5.1.2 Settling Time of Preamplifiers -- 5.2 Dynamics and Noise of JFET Amplifiers -- 5.2.1 Static and Dynamic Parameters of JFETs -- 5.2.2 Noise Characteristics of JFETs -- 5.2.3 PentaFET: High Precision Reset Mechanism -- 5.2.4 The JFET Cascode Stage. 5.2.5 The Source Follower-Based. Charge-Sensitive. Preamplifier -- 5.2.6 The Differential Stage Based on Matched JFETs -- 5.3 The Low Noise Amplifiers Based on High Electron Mobility Transistor (HEMT) -- 5.4 The dc SQUID Current Amplifiers -- 5.4.1 The dc SQUID as a Superconducting Parametric Amplifier -- 5.4.2 The dc SQUID with an Intermediary Input Transformer -- 5.4.3 The Coupled Energy Resolution of a Double Transformer dc SQUID -- 5.4.4 The dc SQUID Readout Electronics -- 5.4.5 The SQUID with the Digital Bode FLL Controller -- 5.4.6 The dc SQUID Amplifier in the Small-Signal Limit (Noise) -- 5.4.7 SQUID Current Amplifier in the Large Signal Limit (Dynamics) -- 5.4.8 SQUID Current Amplifier in the Large Signal Limit (Noise) -- 5.5 The dc SQUID Current Amplifier at Ultralow Temperature (ULT) -- 5.5.1 A Double-Stage. Amplifier with a Single Front ULT SQUID -- 5.5.2 A Double-Stage. Amplifier with the Front ULT SQUID Array -- 5.6 Microwave SQUID Parametric Amplifiers -- 5.6.1 Operation Principle of Microwave SQUIDs with External Pumping (MSQUIDs) -- 5.6.2 The Nonlinearities in the MSQUID Readout -- 5.6.3 The Flux Ramp Modulation Methodology -- 5.6.4 Performance of MSQUID Current Amplifier -- 5.7 Design Methodology of Analog Circuitries -- 5.7.1 The Laplace Transform: Transfer Functions of Electronic Networks -- 5.7.2 Design of Analog Pulse-Shaping. Filter Cells -- 5.7.3 Design of Low-Pass. Filters -- 5.7.4 Graphical Methods of Analysis and Synthesis in the Frequency Domain -- 5.7.5 The Describing Function of Nonlinear Elements in the Frequency Domain -- 5.7.6 Systems with Synchronous Multipliers -- References -- Chapter 6 The Energy Resolution of Radiation Spectrometers -- Introduction -- 6.1 Signal-to-Noise. Ratio, Equivalent Noise Charge of Radiation Spectrometers: General Definitions. 6.2 Energy Resolution of Quasiparticle Detectors (STJs, SDDs) -- 6.2.1 The Tunnel Junction Coupled to a JFET Transconductance Amplifier -- 6.2.2 Energy Resolution of STJ Sensors Readout with SQUID Current Preamps -- 6.3 Optimal Filtration in Radiation Spectrometers -- 6.4 Energy Resolution of TES Microcalorimeters -- 6.5 Matrix Readout Multiplexing of STJ Detectors -- 6.5.1 Matrix Readout of STJ Sensors with JFET Transconductance Amplifiers -- 6.5.2 Matrix Readout with SQUID Current Amplifiers -- 6.6 Time-Division. Multiplexor (TDM) -- 6.7 Frequency Division Multiplexing with Microwave SQUIDs (μMUX) -- 6.8 Code Division Multiplexing (CDM): Spread-Spectrum. Modulation (SSM) -- References -- Chapter 7 Signal Processing in Radiation Spectrometers -- Introduction -- 7.1 Signal Conditioning Units -- 7.1.1 Overview of the Digital Pulse Processing Architectures -- 7.1.2 AC-Coupled. Digital Spectrometers -- 7.1.3 Digital Pulse Processing with the Moving Window Deconvolution -- 7.1.4 DC-Coupled. Digital Pulse Processors -- 7.1.5 DC-Coupled. Digital Pulse Processors with a Sliding Window Signal Conditioner -- 7.2 Analog-to-Digital. Conversion -- 7.2.1 Analog-to-Digital. Converters: Basic Information -- 7.2.2 The Quantization Noise Model of ADC -- 7.2.3 Nonlinearities of ADC -- 7.2.4 Aperture Time of ADCs -- 7.2.5 Aperture Uncertainty of ADCs -- 7.2.6 Reduction of the Differential Nonlinearity with the Sliding Scale Method -- 7.3 Digital Filtration -- 7.3.1 Z-Transform. Methodology -- 7.3.2 Design of Digital Filters with Z-transform -- 7.3.3 The Stability of Digital Filters -- 7.3.4 Trapezoidal Pulse-Shaping. Digital Filter -- 7.3.5 Moving Average Pulse Processing -- 7.4 Throughput of Digital Spectrometers -- 7.4.1 Pulse Recognition Channel: Pileup Detection -- 7.4.2 Timing Resolution of Digital Spectrometers. 7.4.3 The Pileup Decoding in Digital Pulse Processors. |
Record Nr. | UNINA-9910830076803321 |
Polushkin Vladimir | ||
Hoboken, New Jersey : , : Wiley, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|