top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
DPSM for modeling engineering problems [[electronic resource] /] / edited by Dominique Placko and Tribikram Kundu
DPSM for modeling engineering problems [[electronic resource] /] / edited by Dominique Placko and Tribikram Kundu
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2007
Descrizione fisica 1 online resource (394 p.)
Disciplina 620.015118
Altri autori (Persone) PlackoDominique
KunduT (Tribikram)
Soggetto topico Distributed point source method (Numerical analysis)
Engineering mathematics
Ultrasonic waves - Mathematical models
Electromagnetic devices - Design and construction - Mathematics
Electrostatics - Mathematics
Electromagnetism - Mathematical models
Magnetism - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-280-90115-2
9786610901159
0-470-14240-5
0-470-14239-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DPSM FOR MODELING ENGINEERING PROBLEMS; CONTENTS; Preface; Contributors; Chapter 1 - Basic Theory of Distributed Point Source Method (DPSM) and Its Application to Some Simple Problems; 1.1 Introduction and Historical Development of DPSM; 1.2 Basic Principles of DPSM Modeling; 1.2.1 The fundamental idea; 1.2.1.1 Basic equations; 1.2.1.2 Boundary conditions; 1.2.2 Example in the case of a magnetic open core sensor; 1.2.2.1 Governing equations and solution; 1.2.2.2 Solution of coupling equations; 1.2.2.3 Results and discussion; 1.3 Examples From Ultrasonic Transducer Modeling
1.3.1 Justification of modeling a finite plane source by a distribution of point sources1.3.2 Planar piston transducer in a fluid; 1.3.2.1 Conventional surface integral technique; 1.3.2.2 Alternative DPSM for computing the ultrasonic field; 1.3.2.3 Restrictions on r(s) for point source distribution; 1.3.3 Focused transducer in a homogeneous fluid; 1.3.4 Ultrasonic field in a nonhomogeneous fluid in the presence of an interface; 1.3.4.1 Pressure field computation in fluid 1 at point P; 1.3.4.2 Pressure field computation in fluid 2 at point Q
1.3.5 DPSM technique for ultrasonic field modeling in nonhomogeneous fluid1.3.5.1 Field computation in fluid 1; 1.3.5.2 Field in fluid 2; 1.3.6 Ultrasonic field in the presence of a scatterer; 1.3.7 Numerical results; 1.3.7.1 Ultrasonic field in a homogeneous fluid; 1.3.7.2 Ultrasonic field in a nonhomogeneous fluid - DPSM technique; 1.3.7.3 Ultrasonic field in a nonhomogeneous fluid - surface integral method; 1.3.7.4 Ultrasonic field in the presence of a finite-size scatterer; References; Chapter 2-Advanced Theory of DPSM-Modeling Multilayered Medium and Inclusions of Arbitrary Shape
2.1 Introduction2.2 Theory of Multilayered Medium Modeling; 2.2.1 Transducer faces not coinciding with any interface; 2.2.1.1 Source strength determination from boundary and interface conditions; 2.2.2 Transducer faces coinciding with the interface - case 1: transducer faces modeled separately; 2.2.2.1 Source strength determination from interface and boundary conditions; 2.2.2.2 Counting number of equations and number of unknowns; 2.2.3 Transducer faces coinciding with the interface - case 2: transducer faces are part of the interface
2.2.3.1 Source strength determination from interface and boundary conditions2.2.4 Special case involving one interface and one transducer only; 2.3 Theory for Multilayered Medium Considering the Interaction Effect on the Transducer Surface; 2.3.1 Source strength determination from interface conditions; 2.3.2 Counting number of equations and number of unknowns; 2.4 Interference between Two Transducers: Step-by-Step Analysis of Multiple Reflection; 2.5 Scattering by an Inclusion of Arbitrary Shape; 2.6 Scattering by an Inclusion of Arbitrary Shape - An Alternative Approach
2.7 Electric Field in a Multilayered Medium
Record Nr. UNINA-9910143404303321
Hoboken, N.J., : Wiley-Interscience, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
DPSM for modeling engineering problems [[electronic resource] /] / edited by Dominique Placko and Tribikram Kundu
DPSM for modeling engineering problems [[electronic resource] /] / edited by Dominique Placko and Tribikram Kundu
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2007
Descrizione fisica 1 online resource (394 p.)
Disciplina 620.015118
Altri autori (Persone) PlackoDominique
KunduT (Tribikram)
Soggetto topico Distributed point source method (Numerical analysis)
Engineering mathematics
Ultrasonic waves - Mathematical models
Electromagnetic devices - Design and construction - Mathematics
Electrostatics - Mathematics
Electromagnetism - Mathematical models
Magnetism - Mathematical models
ISBN 1-280-90115-2
9786610901159
0-470-14240-5
0-470-14239-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DPSM FOR MODELING ENGINEERING PROBLEMS; CONTENTS; Preface; Contributors; Chapter 1 - Basic Theory of Distributed Point Source Method (DPSM) and Its Application to Some Simple Problems; 1.1 Introduction and Historical Development of DPSM; 1.2 Basic Principles of DPSM Modeling; 1.2.1 The fundamental idea; 1.2.1.1 Basic equations; 1.2.1.2 Boundary conditions; 1.2.2 Example in the case of a magnetic open core sensor; 1.2.2.1 Governing equations and solution; 1.2.2.2 Solution of coupling equations; 1.2.2.3 Results and discussion; 1.3 Examples From Ultrasonic Transducer Modeling
1.3.1 Justification of modeling a finite plane source by a distribution of point sources1.3.2 Planar piston transducer in a fluid; 1.3.2.1 Conventional surface integral technique; 1.3.2.2 Alternative DPSM for computing the ultrasonic field; 1.3.2.3 Restrictions on r(s) for point source distribution; 1.3.3 Focused transducer in a homogeneous fluid; 1.3.4 Ultrasonic field in a nonhomogeneous fluid in the presence of an interface; 1.3.4.1 Pressure field computation in fluid 1 at point P; 1.3.4.2 Pressure field computation in fluid 2 at point Q
1.3.5 DPSM technique for ultrasonic field modeling in nonhomogeneous fluid1.3.5.1 Field computation in fluid 1; 1.3.5.2 Field in fluid 2; 1.3.6 Ultrasonic field in the presence of a scatterer; 1.3.7 Numerical results; 1.3.7.1 Ultrasonic field in a homogeneous fluid; 1.3.7.2 Ultrasonic field in a nonhomogeneous fluid - DPSM technique; 1.3.7.3 Ultrasonic field in a nonhomogeneous fluid - surface integral method; 1.3.7.4 Ultrasonic field in the presence of a finite-size scatterer; References; Chapter 2-Advanced Theory of DPSM-Modeling Multilayered Medium and Inclusions of Arbitrary Shape
2.1 Introduction2.2 Theory of Multilayered Medium Modeling; 2.2.1 Transducer faces not coinciding with any interface; 2.2.1.1 Source strength determination from boundary and interface conditions; 2.2.2 Transducer faces coinciding with the interface - case 1: transducer faces modeled separately; 2.2.2.1 Source strength determination from interface and boundary conditions; 2.2.2.2 Counting number of equations and number of unknowns; 2.2.3 Transducer faces coinciding with the interface - case 2: transducer faces are part of the interface
2.2.3.1 Source strength determination from interface and boundary conditions2.2.4 Special case involving one interface and one transducer only; 2.3 Theory for Multilayered Medium Considering the Interaction Effect on the Transducer Surface; 2.3.1 Source strength determination from interface conditions; 2.3.2 Counting number of equations and number of unknowns; 2.4 Interference between Two Transducers: Step-by-Step Analysis of Multiple Reflection; 2.5 Scattering by an Inclusion of Arbitrary Shape; 2.6 Scattering by an Inclusion of Arbitrary Shape - An Alternative Approach
2.7 Electric Field in a Multilayered Medium
Record Nr. UNINA-9910829906203321
Hoboken, N.J., : Wiley-Interscience, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
DPSM for modeling engineering problems [[electronic resource] /] / edited by Dominique Placko and Tribikram Kundu
DPSM for modeling engineering problems [[electronic resource] /] / edited by Dominique Placko and Tribikram Kundu
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2007
Descrizione fisica 1 online resource (394 p.)
Disciplina 620.015118
Altri autori (Persone) PlackoDominique
KunduT (Tribikram)
Soggetto topico Distributed point source method (Numerical analysis)
Engineering mathematics
Ultrasonic waves - Mathematical models
Electromagnetic devices - Design and construction - Mathematics
Electrostatics - Mathematics
Electromagnetism - Mathematical models
Magnetism - Mathematical models
ISBN 1-280-90115-2
9786610901159
0-470-14240-5
0-470-14239-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DPSM FOR MODELING ENGINEERING PROBLEMS; CONTENTS; Preface; Contributors; Chapter 1 - Basic Theory of Distributed Point Source Method (DPSM) and Its Application to Some Simple Problems; 1.1 Introduction and Historical Development of DPSM; 1.2 Basic Principles of DPSM Modeling; 1.2.1 The fundamental idea; 1.2.1.1 Basic equations; 1.2.1.2 Boundary conditions; 1.2.2 Example in the case of a magnetic open core sensor; 1.2.2.1 Governing equations and solution; 1.2.2.2 Solution of coupling equations; 1.2.2.3 Results and discussion; 1.3 Examples From Ultrasonic Transducer Modeling
1.3.1 Justification of modeling a finite plane source by a distribution of point sources1.3.2 Planar piston transducer in a fluid; 1.3.2.1 Conventional surface integral technique; 1.3.2.2 Alternative DPSM for computing the ultrasonic field; 1.3.2.3 Restrictions on r(s) for point source distribution; 1.3.3 Focused transducer in a homogeneous fluid; 1.3.4 Ultrasonic field in a nonhomogeneous fluid in the presence of an interface; 1.3.4.1 Pressure field computation in fluid 1 at point P; 1.3.4.2 Pressure field computation in fluid 2 at point Q
1.3.5 DPSM technique for ultrasonic field modeling in nonhomogeneous fluid1.3.5.1 Field computation in fluid 1; 1.3.5.2 Field in fluid 2; 1.3.6 Ultrasonic field in the presence of a scatterer; 1.3.7 Numerical results; 1.3.7.1 Ultrasonic field in a homogeneous fluid; 1.3.7.2 Ultrasonic field in a nonhomogeneous fluid - DPSM technique; 1.3.7.3 Ultrasonic field in a nonhomogeneous fluid - surface integral method; 1.3.7.4 Ultrasonic field in the presence of a finite-size scatterer; References; Chapter 2-Advanced Theory of DPSM-Modeling Multilayered Medium and Inclusions of Arbitrary Shape
2.1 Introduction2.2 Theory of Multilayered Medium Modeling; 2.2.1 Transducer faces not coinciding with any interface; 2.2.1.1 Source strength determination from boundary and interface conditions; 2.2.2 Transducer faces coinciding with the interface - case 1: transducer faces modeled separately; 2.2.2.1 Source strength determination from interface and boundary conditions; 2.2.2.2 Counting number of equations and number of unknowns; 2.2.3 Transducer faces coinciding with the interface - case 2: transducer faces are part of the interface
2.2.3.1 Source strength determination from interface and boundary conditions2.2.4 Special case involving one interface and one transducer only; 2.3 Theory for Multilayered Medium Considering the Interaction Effect on the Transducer Surface; 2.3.1 Source strength determination from interface conditions; 2.3.2 Counting number of equations and number of unknowns; 2.4 Interference between Two Transducers: Step-by-Step Analysis of Multiple Reflection; 2.5 Scattering by an Inclusion of Arbitrary Shape; 2.6 Scattering by an Inclusion of Arbitrary Shape - An Alternative Approach
2.7 Electric Field in a Multilayered Medium
Record Nr. UNINA-9910841501903321
Hoboken, N.J., : Wiley-Interscience, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of instrumentation and measurement [[electronic resource] /] / edited by Dominique Placko
Fundamentals of instrumentation and measurement [[electronic resource] /] / edited by Dominique Placko
Autore Placko Dominique
Edizione [1st edition]
Pubbl/distr/stampa London ; ; Newport Beach, Calif., : ISTE, c2007
Descrizione fisica 1 online resource (556 p.)
Disciplina 530.8
620.0044
Altri autori (Persone) PlackoDominique
Collana Instrumentation and measurement series
Soggetto topico Measurement
Engineering instruments
Scientific apparatus and instruments
Detectors
Soggetto genere / forma Electronic books.
ISBN 1-118-61364-3
1-280-84771-9
9786610847716
0-470-61202-9
0-470-39467-6
1-84704-589-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Fundamentals of Instrumentation and Measurement; Table of Contents; Introduction; Chapter 1. Measurement Instrumentation; 1.1. General introduction and definitions; 1.2. The historical aspects of measurement; 1.3. Terminology: measurement, instrumentation and metrology; 1.4. MIM interactions: measurement-instrumentation-metrology; 1.5. Instrumentation; 1.6. Is a classification of instruments possible?; 1.6.1. Classification of instruments used in cars; 1.7. Instrument modeling; 1.7.1. Model of a measurement instrument; 1.7.2. Load effects; 1.7.3. Estimating load effects
1.7.4. Effort and flow variables1.7.5. Features and operating points of a system; 1.7.6. Generalized impedance; 1.7.7. Determining the load effect; 1.7.8. Measurement with a car battery; 1.7.9. Determining impedances; 1.7.10. Generalized admittance; 1.8. Characteristics of an instrument; 1.8.1. Components of static transfer functions; 1.8.2. Dynamic characteristics; 1.8.3. Instrument performance; 1.8.4. Combining transfer functions; 1.9. Implementing measurement acquisition; 1.9.1. Principles and methodology of measurement; 1.9.2. Field measurement constraints: instrumentation on the road
1.10. Analyzing measurements obtained by an instrument1.10.1. Error reduction; 1.10.2. Base definitions; 1.11. Partial conclusion; 1.12. Electronic instrumentation; 1.13. Electronic instrumentation functionality; 1.13.1. Programmable instrumentation; 1.13.2. Example of an electronic instrument: how a piezoelectric sensor detects rattle in a combustion engine; 1.14. The role of instrumentation in quality control; 1.15. Conclusion; 1.16. Appendix; 1.17. Bibliography; Chapter 2. General Principles of Sensors; 2.1. General points; 2.1.1. Basic definitions; 2.1.2. Secondary definitions
2.2. Metrological characteristics of sensors2.2.1. Systematic errors; 2.2.2. Random uncertainties; 2.2.3. Analyzing random errors and uncertainties; 2.2.3.1. Evaluating random uncertainties. Standard deviations. Variances; 2.2.3.2. Decisions about random uncertainties; 2.2.3.3. Reliability, accuracy, precision; 2.3. Sensor calibration; 2.3.1. Simple calibration; 2.3.2. Multiple calibration; 2.3.3. Linking international measurement systems; 2.4. Band pass and response time; 2.4.1. Harmonic response; 2.4.2. Response time; 2.5. Passive sensor conditioners
2.5.1. The effect of polarization instabilities2.5.2. Effects of influence variables; 2.5.3. Conditioners of complex impedance sensors; 2.6. Conditioners for active sensors; 2.6.1. Direct reading; 2.6.2. Using operational amplifiers; 2.7. Bibliography; Chapter 3. Physical Principles of Optical, Thermal and Mechanical Sensors; 3.1. Optical sensors; 3.1.1. Energetic flux; 3.1.2. Luminous flux; 3.1.3. The relative luminous efficiency curve V(λ ) of the human eye; 3.1.4. The black body: a reference for optical sensors; 3.1.4.1. Black body radiation; 3.1.4.2. Realization of black bodies
3.1.5. Radiation exchanges between a source and a detector
Record Nr. UNINA-9910143316803321
Placko Dominique  
London ; ; Newport Beach, Calif., : ISTE, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of instrumentation and measurement [[electronic resource] /] / edited by Dominique Placko
Fundamentals of instrumentation and measurement [[electronic resource] /] / edited by Dominique Placko
Autore Placko Dominique
Edizione [1st edition]
Pubbl/distr/stampa London ; ; Newport Beach, Calif., : ISTE, c2007
Descrizione fisica 1 online resource (556 p.)
Disciplina 530.8
620.0044
Altri autori (Persone) PlackoDominique
Collana Instrumentation and measurement series
Soggetto topico Measurement
Engineering instruments
Scientific apparatus and instruments
Detectors
ISBN 1-118-61364-3
1-280-84771-9
9786610847716
0-470-61202-9
0-470-39467-6
1-84704-589-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Fundamentals of Instrumentation and Measurement; Table of Contents; Introduction; Chapter 1. Measurement Instrumentation; 1.1. General introduction and definitions; 1.2. The historical aspects of measurement; 1.3. Terminology: measurement, instrumentation and metrology; 1.4. MIM interactions: measurement-instrumentation-metrology; 1.5. Instrumentation; 1.6. Is a classification of instruments possible?; 1.6.1. Classification of instruments used in cars; 1.7. Instrument modeling; 1.7.1. Model of a measurement instrument; 1.7.2. Load effects; 1.7.3. Estimating load effects
1.7.4. Effort and flow variables1.7.5. Features and operating points of a system; 1.7.6. Generalized impedance; 1.7.7. Determining the load effect; 1.7.8. Measurement with a car battery; 1.7.9. Determining impedances; 1.7.10. Generalized admittance; 1.8. Characteristics of an instrument; 1.8.1. Components of static transfer functions; 1.8.2. Dynamic characteristics; 1.8.3. Instrument performance; 1.8.4. Combining transfer functions; 1.9. Implementing measurement acquisition; 1.9.1. Principles and methodology of measurement; 1.9.2. Field measurement constraints: instrumentation on the road
1.10. Analyzing measurements obtained by an instrument1.10.1. Error reduction; 1.10.2. Base definitions; 1.11. Partial conclusion; 1.12. Electronic instrumentation; 1.13. Electronic instrumentation functionality; 1.13.1. Programmable instrumentation; 1.13.2. Example of an electronic instrument: how a piezoelectric sensor detects rattle in a combustion engine; 1.14. The role of instrumentation in quality control; 1.15. Conclusion; 1.16. Appendix; 1.17. Bibliography; Chapter 2. General Principles of Sensors; 2.1. General points; 2.1.1. Basic definitions; 2.1.2. Secondary definitions
2.2. Metrological characteristics of sensors2.2.1. Systematic errors; 2.2.2. Random uncertainties; 2.2.3. Analyzing random errors and uncertainties; 2.2.3.1. Evaluating random uncertainties. Standard deviations. Variances; 2.2.3.2. Decisions about random uncertainties; 2.2.3.3. Reliability, accuracy, precision; 2.3. Sensor calibration; 2.3.1. Simple calibration; 2.3.2. Multiple calibration; 2.3.3. Linking international measurement systems; 2.4. Band pass and response time; 2.4.1. Harmonic response; 2.4.2. Response time; 2.5. Passive sensor conditioners
2.5.1. The effect of polarization instabilities2.5.2. Effects of influence variables; 2.5.3. Conditioners of complex impedance sensors; 2.6. Conditioners for active sensors; 2.6.1. Direct reading; 2.6.2. Using operational amplifiers; 2.7. Bibliography; Chapter 3. Physical Principles of Optical, Thermal and Mechanical Sensors; 3.1. Optical sensors; 3.1.1. Energetic flux; 3.1.2. Luminous flux; 3.1.3. The relative luminous efficiency curve V(λ ) of the human eye; 3.1.4. The black body: a reference for optical sensors; 3.1.4.1. Black body radiation; 3.1.4.2. Realization of black bodies
3.1.5. Radiation exchanges between a source and a detector
Record Nr. UNINA-9910677545203321
Placko Dominique  
London ; ; Newport Beach, Calif., : ISTE, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of instrumentation and measurement [[electronic resource] /] / edited by Dominique Placko
Fundamentals of instrumentation and measurement [[electronic resource] /] / edited by Dominique Placko
Autore Placko Dominique
Edizione [1st edition]
Pubbl/distr/stampa London ; ; Newport Beach, Calif., : ISTE, c2007
Descrizione fisica 1 online resource (556 p.)
Disciplina 530.8
620.0044
Altri autori (Persone) PlackoDominique
Collana Instrumentation and measurement series
Soggetto topico Measurement
Engineering instruments
Scientific apparatus and instruments
Detectors
ISBN 1-118-61364-3
1-280-84771-9
9786610847716
0-470-61202-9
0-470-39467-6
1-84704-589-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Fundamentals of Instrumentation and Measurement; Table of Contents; Introduction; Chapter 1. Measurement Instrumentation; 1.1. General introduction and definitions; 1.2. The historical aspects of measurement; 1.3. Terminology: measurement, instrumentation and metrology; 1.4. MIM interactions: measurement-instrumentation-metrology; 1.5. Instrumentation; 1.6. Is a classification of instruments possible?; 1.6.1. Classification of instruments used in cars; 1.7. Instrument modeling; 1.7.1. Model of a measurement instrument; 1.7.2. Load effects; 1.7.3. Estimating load effects
1.7.4. Effort and flow variables1.7.5. Features and operating points of a system; 1.7.6. Generalized impedance; 1.7.7. Determining the load effect; 1.7.8. Measurement with a car battery; 1.7.9. Determining impedances; 1.7.10. Generalized admittance; 1.8. Characteristics of an instrument; 1.8.1. Components of static transfer functions; 1.8.2. Dynamic characteristics; 1.8.3. Instrument performance; 1.8.4. Combining transfer functions; 1.9. Implementing measurement acquisition; 1.9.1. Principles and methodology of measurement; 1.9.2. Field measurement constraints: instrumentation on the road
1.10. Analyzing measurements obtained by an instrument1.10.1. Error reduction; 1.10.2. Base definitions; 1.11. Partial conclusion; 1.12. Electronic instrumentation; 1.13. Electronic instrumentation functionality; 1.13.1. Programmable instrumentation; 1.13.2. Example of an electronic instrument: how a piezoelectric sensor detects rattle in a combustion engine; 1.14. The role of instrumentation in quality control; 1.15. Conclusion; 1.16. Appendix; 1.17. Bibliography; Chapter 2. General Principles of Sensors; 2.1. General points; 2.1.1. Basic definitions; 2.1.2. Secondary definitions
2.2. Metrological characteristics of sensors2.2.1. Systematic errors; 2.2.2. Random uncertainties; 2.2.3. Analyzing random errors and uncertainties; 2.2.3.1. Evaluating random uncertainties. Standard deviations. Variances; 2.2.3.2. Decisions about random uncertainties; 2.2.3.3. Reliability, accuracy, precision; 2.3. Sensor calibration; 2.3.1. Simple calibration; 2.3.2. Multiple calibration; 2.3.3. Linking international measurement systems; 2.4. Band pass and response time; 2.4.1. Harmonic response; 2.4.2. Response time; 2.5. Passive sensor conditioners
2.5.1. The effect of polarization instabilities2.5.2. Effects of influence variables; 2.5.3. Conditioners of complex impedance sensors; 2.6. Conditioners for active sensors; 2.6.1. Direct reading; 2.6.2. Using operational amplifiers; 2.7. Bibliography; Chapter 3. Physical Principles of Optical, Thermal and Mechanical Sensors; 3.1. Optical sensors; 3.1.1. Energetic flux; 3.1.2. Luminous flux; 3.1.3. The relative luminous efficiency curve V(λ ) of the human eye; 3.1.4. The black body: a reference for optical sensors; 3.1.4.1. Black body radiation; 3.1.4.2. Realization of black bodies
3.1.5. Radiation exchanges between a source and a detector
Record Nr. UNISA-996216943903316
Placko Dominique  
London ; ; Newport Beach, Calif., : ISTE, c2007
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui