top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Fatigue of materials and structures [[electronic resource] ;] : application to design and damage / / edited by Claude Bathias, André Pineau
Fatigue of materials and structures [[electronic resource] ;] : application to design and damage / / edited by Claude Bathias, André Pineau
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (360 p.)
Disciplina 620.1126
Altri autori (Persone) BathiasClaude
PineauA (André)
Collana ISTE
Soggetto topico Materials - Fatigue
Materials - Mechanical properties
Microstructure
ISBN 1-118-61699-5
1-299-31515-1
1-118-61651-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: ch. 1 Multiaxial Fatigue / Marc Blétry and Georges Cailletaud -- 1.1.Introduction -- 1.1.1.Variables in a plane -- 1.1.2.Invariants -- 1.1.3.Classification of the cracking modes -- 1.2.Experimental aspects -- 1.2.1.Multiaxial fatigue experiments -- 1.2.2.Main results -- 1.2.3.Notations -- 1.3.Criteria specific to the unlimited endurance domain -- 1.3.1.Background -- 1.3.2.Global criteria -- 1.3.3.Critical plane criteria -- 1.3.4.Relationship between energetic and mesoscopic criteria -- 1.4.Low cycle fatigue criteria -- 1.4.1.Brown-Miller -- 1.4.2.SWT criteria -- 1.4.3.Jacquelin criterion -- 1.4.4.Additive criteria under sliding and stress amplitude -- 1.4.5.Onera model -- 1.5.Calculating methods of the lifetime under multiaxial conditions -- 1.5.1.Lifetime at N cycles for a periodic loading -- 1.5.2.Damage cumulation -- 1.5.3.Calculation methods -- 1.6.Conclusion -- 1.7.Bibliography -- ch. 2 Cumulative Damage / Jean-Louis Chaboche -- 2.1.Introduction -- 2.2.Nonlinear fatigue cumulative damage -- 2.2.1.Main observations -- 2.2.2.Various types of nonlinear cumulative damage models -- 2.2.3.Possible definitions of the damage variable -- 2.3.A nonlinear cumulative fatigue damage model -- 2.3.1.General form -- 2.3.2.Special forms of functions F and G -- 2.3.3.Application under complex loadings -- 2.4.Damage law of incremental type -- 2.4.1.Damage accumulation in strain or energy -- 2.4.2.Lemaitre's formulation -- 2.4.3.Other incremental models -- 2.5.Cumulative damage under fatigue-creep conditions -- 2.5.1.Rabotnov-Kachanov creep damage law -- 2.5.2.Fatigue damage -- 2.5.3.Creep-fatigue interaction -- 2.5.4.Practical application -- 2.5.5.Fatigue-oxidation-creep interaction -- 2.6.Conclusion -- 2.7.Bibliography -- ch. 3 Damage Tolerance Design / Raphael Cazes -- 3.1.Background -- 3.2.Evolution of the design concept of "fatigue" phenomenon -- 3.2.1.First approach to fatigue resistance -- 3.2.2.The "damage tolerance" concept -- 3.2.3.Consideration of "damage tolerance" -- 3.3.Impact of damage tolerance on design -- 3.3.1."Structural" impact -- 3.3.2."Material" impact -- 3.4.Calculation of a "stress intensity factor" -- 3.4.1.Use of the "handbook" (simple cases) -- 3.4.2.Use of the finite element method: simple and complex cases -- 3.4.3.A simple method to get new configurations -- 3.4.4."Superposition" method -- 3.4.5.Superposition method: applicable examples -- 3.4.6.Numerical application exercise -- 3.5.Performing some "damage tolerance" calculations -- 3.5.1.Complementarity of fatigue and damage tolerance -- 3.5.2.Safety coefficients to understand curve a = f(N) -- 3.5.3.Acquisition of the material parameters -- 3.5.4.Negative parameter: corrosion -- "corrosion fatigue" -- 3.6.Application to the residual strength of thin sheets -- 3.6.1.Planar panels: Feddersen diagram -- 3.6.2.Case of stiffened panels -- 3.7.Propagation of cracks subjected to random loading in the aeronautic industry -- 3.7.1.Modeling of the interactions of loading cycles -- 3.7.2.Comparison of predictions with experimental results -- 3.7.3.Rainflow treatment of random loadings -- 3.8.Conclusion -- 3.8.1.Organization of the evolution of "damage tolerance" -- 3.8.2.Structural maintenance program -- 3.8.3.Inspection of structures being used -- 3.9.Damage tolerance within the gigacyclic domain -- 3.9.1.Observations on crack propagation -- 3.9.2.Propagation of a fish-eye with regards to damage tolerance -- 3.9.3.Example of a turbine disk subjected to vibration -- 3.10.Bibliography -- ch. 4 Defect Influence on the Fatigue Behavior of Metallic Materials / Gilles Baudry -- 4.1.Introduction -- 4.2.Some facts -- 4.2.1.Failure observation -- 4.2.2.Endurance limit level -- 4.2.3.Influence of the rolling reduction ratio and the effect of rolling direction -- 4.2.4.Low cycle fatigue: SN curves -- 4.2.5.Wohler curve: existence of an endurance limit -- 4.2.6.Summary -- 4.3.Approaches -- 4.3.1.First models -- 4.3.2.Kitagawa diagram -- 4.3.3.Murakami model -- 4.4.A few examples -- 4.4.1.Medium-loaded components: example of as-forged parts: connecting rods -- effect of the forging skin -- 4.4.2.High-loaded components: relative importance of cleanliness and surface state -- example of the valve spring -- 4.4.3.High-loaded components: Bearings-Endurance cleanliness relationship -- 4.5.Prospects -- 4.5.1.Estimation of lifetimes and their dispersions -- 4.5.2.Fiber orientation -- 4.5.3.Prestressing -- 4.5.4.Corrosion -- 4.5.5.Complex loadings: spectra/over-loadings/multiaxial loadings -- 4.5.6.Gigacycle fatigue -- 4.6.Conclusion -- 4.7.Bibliography -- ch. 5 Fretting Fatigue: Modeling and Applications / Trevor Lindley -- 5.1.Introduction -- 5.2.Experimental methods -- 5.2.1.Fatigue specimens and contact pads -- 5.2.2.Fatigue S-N data with and without fretting -- 5.2.3.Frictional force measurement -- 5.2.4.Metallography and fractography -- 5.2.5.Mechanisms in fretting fatigue -- 5.3.Fretting fatigue analysis -- 5.3.1.The S-N approach -- 5.3.2.Fretting modeling -- 5.3.3.Two-body contact -- 5.3.4.Fatigue crack initiation -- 5.3.5.Analysis of cracks: the fracture mechanics approach -- 5.3.6.Propagation -- 5.4.Applications under fretting conditions -- 5.4.1.Metallic material: partial slip regime -- 5.4.2.Epoxy polymers: development of cracks under a total slip regime -- 5.5.Palliatives to combat fretting fatigue -- 5.6.Conclusions -- 5.7.Bibliography -- ch. 6 Contact Fatigue / Ky Dang Van -- 6.1.Introduction -- 6.2.Classification of the main types of contact damage -- 6.2.1.Background -- 6.2.2.Damage induced by rolling contacts with or without sliding effect -- 6.2.3.Fretting -- 6.3.A few results on contact mechanics -- 6.3.1.Hertz solution -- 6.3.2.Case of contact with friction under total sliding conditions -- 6.3.3.Case of contact with partial sliding -- 6.3.4.Elastic contact between two solids of different elastic modules -- 6.3.5.3D elastic contact -- 6.4.Elastic limit -- 6.5.Elastoplastic contact -- 6.5.1.Stationary methods -- 6.5.2.Direct cyclic method -- 6.6.Application to modeling of a few contact fatigue issues -- 6.6.1.General methodology -- 6.6.2.Initiation of fatigue cracks in rails -- 6.6.3.Propagation of initiated cracks -- 6.6.4.Application to fretting fatigue -- 6.7.Conclusion -- 6.8.Bibliography -- ch. 7 Thermal Fatigue / Luc Remy -- 7.1.Introduction -- 7.2.Characterization tests -- 7.2.1.Cyclic mechanical behavior -- 7.2.2.Damage -- 7.3.Constitutive and damage models at variable temperatures -- 7.3.1.Constitutive laws -- 7.3.2.Damage process modeling based on fatigue conditions -- 7.3.3.Modeling the damage process in complex cases: towards considering interactions with creep and oxidation phenomena -- 7.4.Applications -- 7.4.1.Exhaust manifolds in automotive industry -- 7.4.2.Cylinder heads made from aluminum alloys in the automotive industry -- 7.4.3.Brake disks in the rail and automotive industries -- 7.4.4.Nuclear industry pipes -- 7.4.5.Simple structures simulating turbine blades -- 7.5.Conclusion -- 7.6.Bibliography.
Record Nr. UNINA-9910139050903321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fatigue of materials and structures : application to design and damage / / edited by Claude Bathias, André Pineau
Fatigue of materials and structures : application to design and damage / / edited by Claude Bathias, André Pineau
Edizione [1st ed.]
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (360 p.)
Disciplina 620.1126
Altri autori (Persone) BathiasClaude
PineauA (André)
Collana ISTE
Soggetto topico Materials - Fatigue
Materials - Mechanical properties
Microstructure
ISBN 1-118-61699-5
1-299-31515-1
1-118-61651-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: ch. 1 Multiaxial Fatigue / Marc Blétry and Georges Cailletaud -- 1.1.Introduction -- 1.1.1.Variables in a plane -- 1.1.2.Invariants -- 1.1.3.Classification of the cracking modes -- 1.2.Experimental aspects -- 1.2.1.Multiaxial fatigue experiments -- 1.2.2.Main results -- 1.2.3.Notations -- 1.3.Criteria specific to the unlimited endurance domain -- 1.3.1.Background -- 1.3.2.Global criteria -- 1.3.3.Critical plane criteria -- 1.3.4.Relationship between energetic and mesoscopic criteria -- 1.4.Low cycle fatigue criteria -- 1.4.1.Brown-Miller -- 1.4.2.SWT criteria -- 1.4.3.Jacquelin criterion -- 1.4.4.Additive criteria under sliding and stress amplitude -- 1.4.5.Onera model -- 1.5.Calculating methods of the lifetime under multiaxial conditions -- 1.5.1.Lifetime at N cycles for a periodic loading -- 1.5.2.Damage cumulation -- 1.5.3.Calculation methods -- 1.6.Conclusion -- 1.7.Bibliography -- ch. 2 Cumulative Damage / Jean-Louis Chaboche -- 2.1.Introduction -- 2.2.Nonlinear fatigue cumulative damage -- 2.2.1.Main observations -- 2.2.2.Various types of nonlinear cumulative damage models -- 2.2.3.Possible definitions of the damage variable -- 2.3.A nonlinear cumulative fatigue damage model -- 2.3.1.General form -- 2.3.2.Special forms of functions F and G -- 2.3.3.Application under complex loadings -- 2.4.Damage law of incremental type -- 2.4.1.Damage accumulation in strain or energy -- 2.4.2.Lemaitre's formulation -- 2.4.3.Other incremental models -- 2.5.Cumulative damage under fatigue-creep conditions -- 2.5.1.Rabotnov-Kachanov creep damage law -- 2.5.2.Fatigue damage -- 2.5.3.Creep-fatigue interaction -- 2.5.4.Practical application -- 2.5.5.Fatigue-oxidation-creep interaction -- 2.6.Conclusion -- 2.7.Bibliography -- ch. 3 Damage Tolerance Design / Raphael Cazes -- 3.1.Background -- 3.2.Evolution of the design concept of "fatigue" phenomenon -- 3.2.1.First approach to fatigue resistance -- 3.2.2.The "damage tolerance" concept -- 3.2.3.Consideration of "damage tolerance" -- 3.3.Impact of damage tolerance on design -- 3.3.1."Structural" impact -- 3.3.2."Material" impact -- 3.4.Calculation of a "stress intensity factor" -- 3.4.1.Use of the "handbook" (simple cases) -- 3.4.2.Use of the finite element method: simple and complex cases -- 3.4.3.A simple method to get new configurations -- 3.4.4."Superposition" method -- 3.4.5.Superposition method: applicable examples -- 3.4.6.Numerical application exercise -- 3.5.Performing some "damage tolerance" calculations -- 3.5.1.Complementarity of fatigue and damage tolerance -- 3.5.2.Safety coefficients to understand curve a = f(N) -- 3.5.3.Acquisition of the material parameters -- 3.5.4.Negative parameter: corrosion -- "corrosion fatigue" -- 3.6.Application to the residual strength of thin sheets -- 3.6.1.Planar panels: Feddersen diagram -- 3.6.2.Case of stiffened panels -- 3.7.Propagation of cracks subjected to random loading in the aeronautic industry -- 3.7.1.Modeling of the interactions of loading cycles -- 3.7.2.Comparison of predictions with experimental results -- 3.7.3.Rainflow treatment of random loadings -- 3.8.Conclusion -- 3.8.1.Organization of the evolution of "damage tolerance" -- 3.8.2.Structural maintenance program -- 3.8.3.Inspection of structures being used -- 3.9.Damage tolerance within the gigacyclic domain -- 3.9.1.Observations on crack propagation -- 3.9.2.Propagation of a fish-eye with regards to damage tolerance -- 3.9.3.Example of a turbine disk subjected to vibration -- 3.10.Bibliography -- ch. 4 Defect Influence on the Fatigue Behavior of Metallic Materials / Gilles Baudry -- 4.1.Introduction -- 4.2.Some facts -- 4.2.1.Failure observation -- 4.2.2.Endurance limit level -- 4.2.3.Influence of the rolling reduction ratio and the effect of rolling direction -- 4.2.4.Low cycle fatigue: SN curves -- 4.2.5.Wohler curve: existence of an endurance limit -- 4.2.6.Summary -- 4.3.Approaches -- 4.3.1.First models -- 4.3.2.Kitagawa diagram -- 4.3.3.Murakami model -- 4.4.A few examples -- 4.4.1.Medium-loaded components: example of as-forged parts: connecting rods -- effect of the forging skin -- 4.4.2.High-loaded components: relative importance of cleanliness and surface state -- example of the valve spring -- 4.4.3.High-loaded components: Bearings-Endurance cleanliness relationship -- 4.5.Prospects -- 4.5.1.Estimation of lifetimes and their dispersions -- 4.5.2.Fiber orientation -- 4.5.3.Prestressing -- 4.5.4.Corrosion -- 4.5.5.Complex loadings: spectra/over-loadings/multiaxial loadings -- 4.5.6.Gigacycle fatigue -- 4.6.Conclusion -- 4.7.Bibliography -- ch. 5 Fretting Fatigue: Modeling and Applications / Trevor Lindley -- 5.1.Introduction -- 5.2.Experimental methods -- 5.2.1.Fatigue specimens and contact pads -- 5.2.2.Fatigue S-N data with and without fretting -- 5.2.3.Frictional force measurement -- 5.2.4.Metallography and fractography -- 5.2.5.Mechanisms in fretting fatigue -- 5.3.Fretting fatigue analysis -- 5.3.1.The S-N approach -- 5.3.2.Fretting modeling -- 5.3.3.Two-body contact -- 5.3.4.Fatigue crack initiation -- 5.3.5.Analysis of cracks: the fracture mechanics approach -- 5.3.6.Propagation -- 5.4.Applications under fretting conditions -- 5.4.1.Metallic material: partial slip regime -- 5.4.2.Epoxy polymers: development of cracks under a total slip regime -- 5.5.Palliatives to combat fretting fatigue -- 5.6.Conclusions -- 5.7.Bibliography -- ch. 6 Contact Fatigue / Ky Dang Van -- 6.1.Introduction -- 6.2.Classification of the main types of contact damage -- 6.2.1.Background -- 6.2.2.Damage induced by rolling contacts with or without sliding effect -- 6.2.3.Fretting -- 6.3.A few results on contact mechanics -- 6.3.1.Hertz solution -- 6.3.2.Case of contact with friction under total sliding conditions -- 6.3.3.Case of contact with partial sliding -- 6.3.4.Elastic contact between two solids of different elastic modules -- 6.3.5.3D elastic contact -- 6.4.Elastic limit -- 6.5.Elastoplastic contact -- 6.5.1.Stationary methods -- 6.5.2.Direct cyclic method -- 6.6.Application to modeling of a few contact fatigue issues -- 6.6.1.General methodology -- 6.6.2.Initiation of fatigue cracks in rails -- 6.6.3.Propagation of initiated cracks -- 6.6.4.Application to fretting fatigue -- 6.7.Conclusion -- 6.8.Bibliography -- ch. 7 Thermal Fatigue / Luc Remy -- 7.1.Introduction -- 7.2.Characterization tests -- 7.2.1.Cyclic mechanical behavior -- 7.2.2.Damage -- 7.3.Constitutive and damage models at variable temperatures -- 7.3.1.Constitutive laws -- 7.3.2.Damage process modeling based on fatigue conditions -- 7.3.3.Modeling the damage process in complex cases: towards considering interactions with creep and oxidation phenomena -- 7.4.Applications -- 7.4.1.Exhaust manifolds in automotive industry -- 7.4.2.Cylinder heads made from aluminum alloys in the automotive industry -- 7.4.3.Brake disks in the rail and automotive industries -- 7.4.4.Nuclear industry pipes -- 7.4.5.Simple structures simulating turbine blades -- 7.5.Conclusion -- 7.6.Bibliography.
Record Nr. UNINA-9910812839803321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fatigue of materials and structures [[electronic resource] /] / edited by Claude Bathias, Andre Pineau
Fatigue of materials and structures [[electronic resource] /] / edited by Claude Bathias, Andre Pineau
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (527 p.)
Disciplina 620.1126
Altri autori (Persone) BathiasClaude
PineauA (André)
Collana ISTE
Soggetto topico Materials - Fatigue
Materials - Mechanical properties
Microstructure
ISBN 1-118-62343-6
1-299-31512-7
0-470-39401-3
1-61344-816-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Fatigue of Materials and Structures; Title Page; Copyright Page; Table of Contents; Foreword; Chapter 1. Introduction to Fatigue: Fundamentals and Methodology; 1.1. Introduction to the fatigue of materials; 1.1.1. Brief history of fatigue: its technical and scientific importance; 1.1.2. Definitions; 1.1.3. Endurance diagrams; 1.2. Mechanisms of fatigue damage; 1.2.1. Introduction/background; 1.2.2. Initiation of fatigue cracks; 1.2.3. Propagation of fatigue cracks; 1.3. Test systems; 1.4. Structural design and fatigue; 1.5. Fatigue of polymers, elastomers and composite materials
1.6. Conclusion1.7. Bibliography; Chapter 2. Modeling of Fatigue Strength and Endurance Curve; 2.1. Introduction; 2.2. Nature and aspect of the scatter of fatigue test results; 2.3. Determination of the endurance limit; 2.4. Estimation methods of fatigue resistance and standard deviation with N cycles; 2.4.1. Probit method; 2.4.2. Staircase method; 2.4.3. Iteration method; 2.4.4. Non-failed specimen method; 2.4.5. Choice of test method; 2.5. Mathematical representations and plotting methods of the Wöhler curve; 2.5.1. Introduction; 2.5.2. Mathematical representation of the Wöhler curve
2.5.3. Adjustment methods of a Wöhler curve to test results2.6. Estimation of the cycle number N for a given level of stress amplitude; 2.6.1. Principle; 2.6.2. Set-up; 2.6.3. Application; 2.7. Influence of mechanical parameters on endurance; 2.7.1. Influence of the mean stress; 2.7.2. Influence of the nature of forces; 2.8. Relationship between endurance and mechanical characteristics (of steels); 2.8.1. Estimations of σD; 2.8.2. Estimation of standard deviations; 2.8.3. Conclusion; 2.9. Bibliography; Chapter 3. Fatigue Crack Initiation; 3.1. Introduction
3.2. Physical mechanisms of crack initiation3.2.1. Three stages of fatigue failure: a reminder; 3.2.2. Influence of stress amplitude; 3.3. Methods of evaluating crack initiation; 3.3.1. Smooth specimens; 3.3.2. Notch effect; 3.4. Practical method of structure calculation; 3.4.1. Preliminary; 3.4.2. The problem to be solved; 3.4.3. Initiation parameters; 3.4.4. The master Wöhler curve (kt = 1); 3.4.5. Cumulative damage (kt = 1); 3.4.6. Specimens with kt > 1: correspondence curve; 3.4.7. Use of correspondence curves; 3.4.8. Plotting the correspondence curves; 3.4.9. Comments and conclusion
3.5. BibliographyChapter 4. Low-cycle Fatigue; 4.1. Introduction; 4.1.1. Application domain of low cycle plastic fatigue; 4.1.2. General description of the test methods: main issues; 4.2. Phenomenological description of low-cycle fatigue; 4.2.1. Background; 4.2.2. Cyclic work hardening; 4.2.3. Cyclic stress-strain relationships; 4.2.4. Fatigue strength; 4.2.5. Mathematical equations; 4.2.6. General behavior: sequence effects and control mode; 4.3. Adaptation mechanism and cracking during low-cycle fatigue; 4.3.1. Introduction; 4.3.2. Adaptation of the material
4.3.3. Description and elementary interpretation of the adaptation stage within structural alloys: steels
Record Nr. UNINA-9910137619403321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fatigue of materials and structures [[electronic resource] /] / edited by Claude Bathias, Andre Pineau
Fatigue of materials and structures [[electronic resource] /] / edited by Claude Bathias, Andre Pineau
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (527 p.)
Disciplina 620.1126
Altri autori (Persone) BathiasClaude
PineauA (André)
Collana ISTE
Soggetto topico Materials - Fatigue
Materials - Mechanical properties
Microstructure
ISBN 1-118-62343-6
1-299-31512-7
0-470-39401-3
1-61344-816-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Fatigue of Materials and Structures; Title Page; Copyright Page; Table of Contents; Foreword; Chapter 1. Introduction to Fatigue: Fundamentals and Methodology; 1.1. Introduction to the fatigue of materials; 1.1.1. Brief history of fatigue: its technical and scientific importance; 1.1.2. Definitions; 1.1.3. Endurance diagrams; 1.2. Mechanisms of fatigue damage; 1.2.1. Introduction/background; 1.2.2. Initiation of fatigue cracks; 1.2.3. Propagation of fatigue cracks; 1.3. Test systems; 1.4. Structural design and fatigue; 1.5. Fatigue of polymers, elastomers and composite materials
1.6. Conclusion1.7. Bibliography; Chapter 2. Modeling of Fatigue Strength and Endurance Curve; 2.1. Introduction; 2.2. Nature and aspect of the scatter of fatigue test results; 2.3. Determination of the endurance limit; 2.4. Estimation methods of fatigue resistance and standard deviation with N cycles; 2.4.1. Probit method; 2.4.2. Staircase method; 2.4.3. Iteration method; 2.4.4. Non-failed specimen method; 2.4.5. Choice of test method; 2.5. Mathematical representations and plotting methods of the Wöhler curve; 2.5.1. Introduction; 2.5.2. Mathematical representation of the Wöhler curve
2.5.3. Adjustment methods of a Wöhler curve to test results2.6. Estimation of the cycle number N for a given level of stress amplitude; 2.6.1. Principle; 2.6.2. Set-up; 2.6.3. Application; 2.7. Influence of mechanical parameters on endurance; 2.7.1. Influence of the mean stress; 2.7.2. Influence of the nature of forces; 2.8. Relationship between endurance and mechanical characteristics (of steels); 2.8.1. Estimations of σD; 2.8.2. Estimation of standard deviations; 2.8.3. Conclusion; 2.9. Bibliography; Chapter 3. Fatigue Crack Initiation; 3.1. Introduction
3.2. Physical mechanisms of crack initiation3.2.1. Three stages of fatigue failure: a reminder; 3.2.2. Influence of stress amplitude; 3.3. Methods of evaluating crack initiation; 3.3.1. Smooth specimens; 3.3.2. Notch effect; 3.4. Practical method of structure calculation; 3.4.1. Preliminary; 3.4.2. The problem to be solved; 3.4.3. Initiation parameters; 3.4.4. The master Wöhler curve (kt = 1); 3.4.5. Cumulative damage (kt = 1); 3.4.6. Specimens with kt > 1: correspondence curve; 3.4.7. Use of correspondence curves; 3.4.8. Plotting the correspondence curves; 3.4.9. Comments and conclusion
3.5. BibliographyChapter 4. Low-cycle Fatigue; 4.1. Introduction; 4.1.1. Application domain of low cycle plastic fatigue; 4.1.2. General description of the test methods: main issues; 4.2. Phenomenological description of low-cycle fatigue; 4.2.1. Background; 4.2.2. Cyclic work hardening; 4.2.3. Cyclic stress-strain relationships; 4.2.4. Fatigue strength; 4.2.5. Mathematical equations; 4.2.6. General behavior: sequence effects and control mode; 4.3. Adaptation mechanism and cracking during low-cycle fatigue; 4.3.1. Introduction; 4.3.2. Adaptation of the material
4.3.3. Description and elementary interpretation of the adaptation stage within structural alloys: steels
Record Nr. UNINA-9910829943403321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
La Métallurgie : science et ingénierie / / animateurs, André Pineau et Yves Quéré
La Métallurgie : science et ingénierie / / animateurs, André Pineau et Yves Quéré
Autore Amatore Christian
Pubbl/distr/stampa EDP SCIENCES, 2011
Descrizione fisica xxxii, 147 p. : ill. (some col.)
Disciplina 669
Altri autori (Persone) PineauA (André)
QuéréYves
Collana Rapport sur la science et la technologie
Soggetto topico Metallurgy
Science
Engineering
Soggetto non controllato academy of sciences
metallurgy
ISBN 2-7598-0906-4
2-7598-0749-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione fre
Nota di contenuto Frontmatter -- Rapport sur la Science et la Technologie -- COMPOSITION DU COMITÉ RST DE L'ACADÉMIE DES SCIENCES -- COMPOSITION DU COMITÉ DES TRAVAUX DE L'ACADÉMIE DES TECHNOLOGIES -- COMPOSITION DU COMITÉ DE LA QUALITÉ DE L'ACADÉMIE DES TECHNOLOGIES -- AVANT-PROPOS -- COMPOSITION DU GROUPE DE TRAVAIL -- TABLE DES MATIÈRES -- RÉSUMÉ ET RECOMMANDATIONS -- SUMMARY AND RECOMMENDATIONS -- INTRODUCTION -- CHAPITRE 1. La Métallurgie, une science à part entière -- 1. La Métallurgie,mère de la science des matériaux -- 2. Métallurgie physique et physique du métal -- 3. Métallurgie et mécanique -- 4. Métallurgie, chimie et thermodynamique -- 5. Métallurgie, physique statistique et numérique -- 6. Métallurgie et élaboration -- Conclusion -- CHAPITRE 2. La Métallurgie : une industrie en pleine mutation -- Introduction -- 1. L'industrie métallurgique en France -- 2. Mise en forme et mise en oeuvre -- 3. Métallurgie et transports -- 4. Métallurgie et énergie nucléaire -- 5. Autres énergies -- 6. Magnétisme et Métallurgie -- 7. Travaux publics et construction -- 8. Métaux et Défense -- 9. Biomatériaux métalliques -- 10. Emballage -- 11. Outillage -- 12. Microélectronique -- 13. Industrie pétrolière -- CHAPITRE 3. La Métallurgie : recherche et enseignement -- 1. La recherche en Métallurgie -- 2. Enseignement de la Métallurgie -- Références bibliographiques -- Glossaire -- Groupe de lecture critique -- Composition du Groupe de lecture critique -- Commentaire de l'Association française de mécanique -- Commentaire du CNRS -- Commentaire du CEA -- Commentaire de la Conférence des présidents d'université -- Commentaire de la Direction générale de la compétitivité, de l'industrie et des services -- Commentaire de EDF Ceidre -- Commentaire de MECAMAT -- Commentaire de PSA Peugeot Citroën -- Commentaire de Renault -- Commentaire de la Société française de métallurgie et des matériaux -- Commentaires de la Société française de physique -- Présentation à l'Académie des sciences, par Jacques Friedel
Record Nr. UNISA-996411340203316
Amatore Christian  
EDP SCIENCES, 2011
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
La Métallurgie : science et ingénierie / / animateurs, André Pineau et Yves Quéré
La Métallurgie : science et ingénierie / / animateurs, André Pineau et Yves Quéré
Autore Amatore Christian
Pubbl/distr/stampa EDP SCIENCES, 2011
Descrizione fisica xxxii, 147 p. : ill. (some col.)
Disciplina 669
Altri autori (Persone) PineauA (André)
QuéréYves
Collana Rapport sur la science et la technologie
Soggetto topico Metallurgy
Science
Engineering
Soggetto non controllato academy of sciences
metallurgy
ISBN 2-7598-0906-4
2-7598-0749-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione fre
Nota di contenuto Frontmatter -- Rapport sur la Science et la Technologie -- COMPOSITION DU COMITÉ RST DE L'ACADÉMIE DES SCIENCES -- COMPOSITION DU COMITÉ DES TRAVAUX DE L'ACADÉMIE DES TECHNOLOGIES -- COMPOSITION DU COMITÉ DE LA QUALITÉ DE L'ACADÉMIE DES TECHNOLOGIES -- AVANT-PROPOS -- COMPOSITION DU GROUPE DE TRAVAIL -- TABLE DES MATIÈRES -- RÉSUMÉ ET RECOMMANDATIONS -- SUMMARY AND RECOMMENDATIONS -- INTRODUCTION -- CHAPITRE 1. La Métallurgie, une science à part entière -- 1. La Métallurgie,mère de la science des matériaux -- 2. Métallurgie physique et physique du métal -- 3. Métallurgie et mécanique -- 4. Métallurgie, chimie et thermodynamique -- 5. Métallurgie, physique statistique et numérique -- 6. Métallurgie et élaboration -- Conclusion -- CHAPITRE 2. La Métallurgie : une industrie en pleine mutation -- Introduction -- 1. L'industrie métallurgique en France -- 2. Mise en forme et mise en oeuvre -- 3. Métallurgie et transports -- 4. Métallurgie et énergie nucléaire -- 5. Autres énergies -- 6. Magnétisme et Métallurgie -- 7. Travaux publics et construction -- 8. Métaux et Défense -- 9. Biomatériaux métalliques -- 10. Emballage -- 11. Outillage -- 12. Microélectronique -- 13. Industrie pétrolière -- CHAPITRE 3. La Métallurgie : recherche et enseignement -- 1. La recherche en Métallurgie -- 2. Enseignement de la Métallurgie -- Références bibliographiques -- Glossaire -- Groupe de lecture critique -- Composition du Groupe de lecture critique -- Commentaire de l'Association française de mécanique -- Commentaire du CNRS -- Commentaire du CEA -- Commentaire de la Conférence des présidents d'université -- Commentaire de la Direction générale de la compétitivité, de l'industrie et des services -- Commentaire de EDF Ceidre -- Commentaire de MECAMAT -- Commentaire de PSA Peugeot Citroën -- Commentaire de Renault -- Commentaire de la Société française de métallurgie et des matériaux -- Commentaires de la Société française de physique -- Présentation à l'Académie des sciences, par Jacques Friedel
Record Nr. UNINA-9910557654903321
Amatore Christian  
EDP SCIENCES, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui