top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Probability, statistics and simulation : with application programs written in R / / Alberto Rotondi, Paolo Pedroni, and Antonio Pievatolo
Probability, statistics and simulation : with application programs written in R / / Alberto Rotondi, Paolo Pedroni, and Antonio Pievatolo
Autore Rotondi Alberto
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (643 pages)
Disciplina 519.50285
Collana Unitext
Soggetto topico Mathematical statistics
R (Computer program language)
Estadística matemàtica
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
ISBN 3-031-09429-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- How to Use the Text -- Contents -- About the Authors -- 1 Probability -- 1.1 Chance, Chaos and Determinism -- 1.2 Some Basic Terms -- 1.3 The Concept of Probability -- 1.4 Axiomatic Probability -- 1.5 Repeated Trials -- 1.6 Elements of Combinatorial Analysis -- 1.7 Bayes' Theorem -- 1.8 Learning Algorithms -- 1.9 Problems -- 2 Representation of Random Phenomena -- 2.1 Introduction -- 2.2 Random Variables -- 2.3 Cumulative or Distribution Function -- 2.4 Data Representation -- 2.5 Discrete Random Variables -- 2.6 Binomial Distribution -- 2.7 Continuous Random Variables -- 2.8 Mean, Sum of Squares, Variance, Standard Deviation and Quantiles -- 2.9 Operators -- 2.10 Simple Random Sample -- 2.11 Convergence Criteria -- 2.12 Problems -- 3 Basic Probability Theory -- 3.1 Introduction -- 3.2 Properties of the Binomial Distribution -- 3.3 Poisson Distribution -- 3.4 Normal or Gaussian Density -- 3.5 The Three-Sigma Law and the Standard Gaussian Density -- 3.6 Central Limit Theorem and Universality of the GaussianCurve -- 3.7 Poisson Stochastic Processes -- 3.8 χ2 Density -- 3.9 Uniform Density -- 3.10 Chebyshev's Inequality -- 3.11 How to Use Probability Calculus -- 3.12 Problems -- 4 Multivariate Probability Theory -- 4.1 Introduction -- 4.2 Multivariate Statistical Distributions -- 4.3 Covariance and Correlation -- 4.4 Two-Dimensional Gaussian Distribution -- 4.5 The General Multidimensional Case -- 4.6 Multivariate Probability Regions -- 4.7 Multinomial Distribution -- 4.8 Problems -- 5 Functions of Random Variables -- 5.1 Introduction -- 5.2 Functions of a Random Variable -- 5.3 Functions of Several Random Variables -- 5.4 Mean and Variance Transformation -- 5.5 Means and Variances for n Variables -- 5.6 Problems -- 6 Basic Statistics: Parameter Estimation -- 6.1 Introduction -- 6.2 Confidence Intervals.
6.3 Confidence Intervals with Pivotal Variables -- 6.4 Mention of the Bayesian Approach -- 6.5 Some Notations -- 6.6 Probability Estimation -- 6.7 Probability Estimation from Large Samples -- 6.8 Poissonian Interval Estimation -- 6.9 Mean Estimation from Large Samples -- 6.10 Variance Estimation from Large Samples -- 6.11 Mean and Variance Estimation for Gaussian Samples -- 6.12 How to Use the Estimation Theory -- 6.13 Estimates from a Finite Population -- 6.14 Histogram Analysis -- 6.15 Estimation of the Correlation -- 6.16 Problems -- 7 Basic Statistics: Hypothesis Testing -- 7.1 Testing One Hypothesis -- 7.2 The Gaussian z-Test -- 7.3 Student's t-Test -- 7.4 Chi-Square Test -- 7.5 Compatibility Check Between Sample and Population -- 7.6 Hypothesis Testing with Contingency Tables -- 7.7 Multiple Tests -- 7.8 Snedecor's F-Test -- 7.9 Analysis of Variance (ANOVA) -- 7.10 Two-Way ANOVA -- 7.11 Problems -- 8 Monte Carlo Methods -- 8.1 Introduction -- 8.2 What Is Monte Carlo? -- 8.3 Mathematical Aspects -- 8.4 Generation of Discrete Random Variables -- 8.5 Generation of Continuous Random Variables -- 8.6 Linear Search Method -- 8.7 Rejection Method -- 8.8 Particular Random Generation Methods -- 8.9 Monte Carlo Analysis of Distributions -- 8.10 Evaluation of Confidence Intervals -- 8.11 Simulation of Counting Experiments -- 8.12 Non-parametric Bootstrap -- 8.13 Hypothesis Test with Simulated Data -- 8.14 Problems -- 9 Applications of Monte Carlo Methods -- 9.1 Introduction -- 9.2 Study of Diffusion Phenomena -- 9.3 Simulation of Stochastic Processes -- 9.4 Number of Workers in a Plant: Synchronous Simulation -- 9.5 Number of Workers in a Plant: Asynchronous Simulation -- 9.6 Kolmogorov-Smirnov Test -- 9.7 Metropolis Algorithm -- 9.8 Ising Model -- 9.9 Definite Integral Calculation -- 9.10 Importance Sampling -- 9.11 Stratified Sampling.
9.12 Multidimensional Integrals -- 9.13 Problems -- 10 Statistical Inference and Likelihood -- 10.1 Introduction -- 10.2 Maximum Likelihood (ML) Method -- 10.3 Estimator Properties -- 10.4 Theorems on Estimators -- 10.5 Confidence Intervals -- 10.6 Least Squares Method and Maximum Likelihood -- 10.7 Best Fit of Densities to Data and Histograms -- 10.8 Weighted Mean -- 10.9 Test of Hypotheses -- 10.10 One- or Two-Sample Tests -- 10.11 Most Powerful Tests -- 10.12 Test Functions -- 10.13 Sequential Tests -- 10.14 Problems -- 11 Least Squares -- 11.1 Introduction -- 11.2 No Errors on Predictors -- 11.3 Errors in Predictors -- 11.4 Least Squares Regression Lines: Unweighted Case -- 11.5 Unweighted Linear Least Squares -- 11.6 Weighted Linear Least Squares -- 11.7 Properties of Least Squares Estimates -- 11.8 Model Testing and Search for Functional Forms -- 11.9 Search for Correlations -- 11.10 Fit Strategies -- 11.11 Nonlinear Least Squares -- 11.12 Problems -- 12 Experimental Data Analysis -- 12.1 Introduction -- 12.2 Terminology -- 12.3 Constant and Variable Physical Quantities -- 12.4 Instrumental Sensitivity and Accuracy -- 12.5 Measurement Uncertainty -- 12.6 Treatment of Systematic Effects -- 12.7 Best Fit with Offset Systematic Errors -- 12.8 Best Fit with Scale Systematic Errors -- 12.9 Indirect Measurements and Error Propagation -- 12.10 Measurement Types -- 12.11 M(0, 0, Δ) Measurements -- 12.12 M(0, σ, 0) Measurements -- 12.13 M(0, σ, Δ) Measurements -- 12.14 M(f, 0, 0) Measurements -- 12.15 M(f, σ, 0), M(f, 0, Δ) and M(f, σ, Δ) Measurements -- 12.16 A Case Study: Millikan's Experiments -- 12.17 Some Remarks on the Scientific Method -- 12.18 Problems -- A Table of Symbols -- B R Software -- C Moment-Generating Functions -- D Solutions of Problems -- E Tables -- E.1 Integral of the Gaussian Density.
E.2 Quantiles of the Student's Density -- E.3 Integrals of the Reduced χ2 Density -- E.4 Quantile Values of the Non-Reduced χ2 Density -- E.5 Quantiles of the F Density -- Bibliography -- Index.
Record Nr. UNISA-996503552003316
Rotondi Alberto  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Probability, statistics and simulation : with application programs written in R / / Alberto Rotondi, Paolo Pedroni, and Antonio Pievatolo
Probability, statistics and simulation : with application programs written in R / / Alberto Rotondi, Paolo Pedroni, and Antonio Pievatolo
Autore Rotondi Alberto
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (643 pages)
Disciplina 519.50285
Collana Unitext
Soggetto topico Mathematical statistics
R (Computer program language)
Estadística matemàtica
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
ISBN 3-031-09429-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- How to Use the Text -- Contents -- About the Authors -- 1 Probability -- 1.1 Chance, Chaos and Determinism -- 1.2 Some Basic Terms -- 1.3 The Concept of Probability -- 1.4 Axiomatic Probability -- 1.5 Repeated Trials -- 1.6 Elements of Combinatorial Analysis -- 1.7 Bayes' Theorem -- 1.8 Learning Algorithms -- 1.9 Problems -- 2 Representation of Random Phenomena -- 2.1 Introduction -- 2.2 Random Variables -- 2.3 Cumulative or Distribution Function -- 2.4 Data Representation -- 2.5 Discrete Random Variables -- 2.6 Binomial Distribution -- 2.7 Continuous Random Variables -- 2.8 Mean, Sum of Squares, Variance, Standard Deviation and Quantiles -- 2.9 Operators -- 2.10 Simple Random Sample -- 2.11 Convergence Criteria -- 2.12 Problems -- 3 Basic Probability Theory -- 3.1 Introduction -- 3.2 Properties of the Binomial Distribution -- 3.3 Poisson Distribution -- 3.4 Normal or Gaussian Density -- 3.5 The Three-Sigma Law and the Standard Gaussian Density -- 3.6 Central Limit Theorem and Universality of the GaussianCurve -- 3.7 Poisson Stochastic Processes -- 3.8 χ2 Density -- 3.9 Uniform Density -- 3.10 Chebyshev's Inequality -- 3.11 How to Use Probability Calculus -- 3.12 Problems -- 4 Multivariate Probability Theory -- 4.1 Introduction -- 4.2 Multivariate Statistical Distributions -- 4.3 Covariance and Correlation -- 4.4 Two-Dimensional Gaussian Distribution -- 4.5 The General Multidimensional Case -- 4.6 Multivariate Probability Regions -- 4.7 Multinomial Distribution -- 4.8 Problems -- 5 Functions of Random Variables -- 5.1 Introduction -- 5.2 Functions of a Random Variable -- 5.3 Functions of Several Random Variables -- 5.4 Mean and Variance Transformation -- 5.5 Means and Variances for n Variables -- 5.6 Problems -- 6 Basic Statistics: Parameter Estimation -- 6.1 Introduction -- 6.2 Confidence Intervals.
6.3 Confidence Intervals with Pivotal Variables -- 6.4 Mention of the Bayesian Approach -- 6.5 Some Notations -- 6.6 Probability Estimation -- 6.7 Probability Estimation from Large Samples -- 6.8 Poissonian Interval Estimation -- 6.9 Mean Estimation from Large Samples -- 6.10 Variance Estimation from Large Samples -- 6.11 Mean and Variance Estimation for Gaussian Samples -- 6.12 How to Use the Estimation Theory -- 6.13 Estimates from a Finite Population -- 6.14 Histogram Analysis -- 6.15 Estimation of the Correlation -- 6.16 Problems -- 7 Basic Statistics: Hypothesis Testing -- 7.1 Testing One Hypothesis -- 7.2 The Gaussian z-Test -- 7.3 Student's t-Test -- 7.4 Chi-Square Test -- 7.5 Compatibility Check Between Sample and Population -- 7.6 Hypothesis Testing with Contingency Tables -- 7.7 Multiple Tests -- 7.8 Snedecor's F-Test -- 7.9 Analysis of Variance (ANOVA) -- 7.10 Two-Way ANOVA -- 7.11 Problems -- 8 Monte Carlo Methods -- 8.1 Introduction -- 8.2 What Is Monte Carlo? -- 8.3 Mathematical Aspects -- 8.4 Generation of Discrete Random Variables -- 8.5 Generation of Continuous Random Variables -- 8.6 Linear Search Method -- 8.7 Rejection Method -- 8.8 Particular Random Generation Methods -- 8.9 Monte Carlo Analysis of Distributions -- 8.10 Evaluation of Confidence Intervals -- 8.11 Simulation of Counting Experiments -- 8.12 Non-parametric Bootstrap -- 8.13 Hypothesis Test with Simulated Data -- 8.14 Problems -- 9 Applications of Monte Carlo Methods -- 9.1 Introduction -- 9.2 Study of Diffusion Phenomena -- 9.3 Simulation of Stochastic Processes -- 9.4 Number of Workers in a Plant: Synchronous Simulation -- 9.5 Number of Workers in a Plant: Asynchronous Simulation -- 9.6 Kolmogorov-Smirnov Test -- 9.7 Metropolis Algorithm -- 9.8 Ising Model -- 9.9 Definite Integral Calculation -- 9.10 Importance Sampling -- 9.11 Stratified Sampling.
9.12 Multidimensional Integrals -- 9.13 Problems -- 10 Statistical Inference and Likelihood -- 10.1 Introduction -- 10.2 Maximum Likelihood (ML) Method -- 10.3 Estimator Properties -- 10.4 Theorems on Estimators -- 10.5 Confidence Intervals -- 10.6 Least Squares Method and Maximum Likelihood -- 10.7 Best Fit of Densities to Data and Histograms -- 10.8 Weighted Mean -- 10.9 Test of Hypotheses -- 10.10 One- or Two-Sample Tests -- 10.11 Most Powerful Tests -- 10.12 Test Functions -- 10.13 Sequential Tests -- 10.14 Problems -- 11 Least Squares -- 11.1 Introduction -- 11.2 No Errors on Predictors -- 11.3 Errors in Predictors -- 11.4 Least Squares Regression Lines: Unweighted Case -- 11.5 Unweighted Linear Least Squares -- 11.6 Weighted Linear Least Squares -- 11.7 Properties of Least Squares Estimates -- 11.8 Model Testing and Search for Functional Forms -- 11.9 Search for Correlations -- 11.10 Fit Strategies -- 11.11 Nonlinear Least Squares -- 11.12 Problems -- 12 Experimental Data Analysis -- 12.1 Introduction -- 12.2 Terminology -- 12.3 Constant and Variable Physical Quantities -- 12.4 Instrumental Sensitivity and Accuracy -- 12.5 Measurement Uncertainty -- 12.6 Treatment of Systematic Effects -- 12.7 Best Fit with Offset Systematic Errors -- 12.8 Best Fit with Scale Systematic Errors -- 12.9 Indirect Measurements and Error Propagation -- 12.10 Measurement Types -- 12.11 M(0, 0, Δ) Measurements -- 12.12 M(0, σ, 0) Measurements -- 12.13 M(0, σ, Δ) Measurements -- 12.14 M(f, 0, 0) Measurements -- 12.15 M(f, σ, 0), M(f, 0, Δ) and M(f, σ, Δ) Measurements -- 12.16 A Case Study: Millikan's Experiments -- 12.17 Some Remarks on the Scientific Method -- 12.18 Problems -- A Table of Symbols -- B R Software -- C Moment-Generating Functions -- D Solutions of Problems -- E Tables -- E.1 Integral of the Gaussian Density.
E.2 Quantiles of the Student's Density -- E.3 Integrals of the Reduced χ2 Density -- E.4 Quantile Values of the Non-Reduced χ2 Density -- E.5 Quantiles of the F Density -- Bibliography -- Index.
Record Nr. UNINA-9910634035603321
Rotondi Alberto  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Probabilità, Statistica e Simulazione [[electronic resource] ] : Programmi applicativi scritti in R / / by Alberto Rotondi, Paolo Pedroni, Antonio Pievatolo
Probabilità, Statistica e Simulazione [[electronic resource] ] : Programmi applicativi scritti in R / / by Alberto Rotondi, Paolo Pedroni, Antonio Pievatolo
Autore Rotondi Alberto
Edizione [4th ed. 2021.]
Pubbl/distr/stampa Milano : , : Springer Milan : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (XV, 621 pagg. 130 figg., 12 figg. a colori.)
Disciplina 519
Collana La Matematica per il 3+2
Soggetto topico Statistics
Measurement
Measuring instruments
Probabilities
Stochastic processes
Computer science—Mathematics
Mathematical statistics
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Measurement Science and Instrumentation
Probability Theory
Stochastic Processes
Probability and Statistics in Computer Science
Estadística matemàtica
Probabilitats
Mètodes de simulació
Soggetto genere / forma Llibres electrònics
ISBN 88-470-4010-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ita
Nota di contenuto 1 La probabilità -- 2 Rappresentazione dei fenomeni aleatori -- 3 Calcolo elementare delle probabilità -- 4 Calcolo delle probabilità per più variabili -- 5 Funzioni di variabili aleatorie -- 6 Statistica di base: stime -- 7 Statistica di base: verifica di ipotesi -- 8 Il metodo Monte Carlo -- 9 Applicazioni del metodo Monte Carlo -- 10 Inferenza statistica e verosimiglianza -- 11 Minimi quadrati -- 12 Analisi dei dati sperimentali.
Record Nr. UNISA-996466396503316
Rotondi Alberto  
Milano : , : Springer Milan : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Probabilità, Statistica e Simulazione : Programmi applicativi scritti in R / / by Alberto Rotondi, Paolo Pedroni, Antonio Pievatolo
Probabilità, Statistica e Simulazione : Programmi applicativi scritti in R / / by Alberto Rotondi, Paolo Pedroni, Antonio Pievatolo
Autore Rotondi Alberto
Edizione [4th ed. 2021.]
Pubbl/distr/stampa Milano : , : Springer Milan : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (XV, 621 pagg. 130 figg., 12 figg. a colori.)
Disciplina 519
Collana La Matematica per il 3+2
Soggetto topico Statistics
Measurement
Measuring instruments
Probabilities
Stochastic processes
Computer science—Mathematics
Mathematical statistics
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Measurement Science and Instrumentation
Probability Theory
Stochastic Processes
Probability and Statistics in Computer Science
Estadística matemàtica
Probabilitats
Mètodes de simulació
Soggetto genere / forma Llibres electrònics
ISBN 88-470-4010-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ita
Nota di contenuto 1 La probabilità -- 2 Rappresentazione dei fenomeni aleatori -- 3 Calcolo elementare delle probabilità -- 4 Calcolo delle probabilità per più variabili -- 5 Funzioni di variabili aleatorie -- 6 Statistica di base: stime -- 7 Statistica di base: verifica di ipotesi -- 8 Il metodo Monte Carlo -- 9 Applicazioni del metodo Monte Carlo -- 10 Inferenza statistica e verosimiglianza -- 11 Minimi quadrati -- 12 Analisi dei dati sperimentali.
Record Nr. UNINA-9910495347803321
Rotondi Alberto  
Milano : , : Springer Milan : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui