top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Liquid crystals : new perspectives / / coordinated by Pawel Pieranski, Maria Helena Godinho
Liquid crystals : new perspectives / / coordinated by Pawel Pieranski, Maria Helena Godinho
Pubbl/distr/stampa London, England : , : Wiley-ISTE, , [2021]
Descrizione fisica 1 online resource (373 pages)
Disciplina 530.429
Soggetto topico Liquid crystals
Soggetto genere / forma Electronic books.
ISBN 1-119-85078-9
1-119-85080-0
1-119-85079-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1. Singular Optics of Liquid Crystal Defects -- 1.1. Prelude from carrots -- 1.2. Liquid crystals, optics and defects: a long-standing trilogy -- 1.3. Polarization optics of liquid crystals: basic ingredients -- 1.3.1. The few liquid crystal phases at play in this chapter -- 1.3.2. Liquid crystals anisotropy and its main optical consequence -- 1.3.3. Polarization state representation in the paraxial regime -- 1.3.4. Polarization state evolution through uniform director fields -- 1.3.5. Effective birefringence -- 1.4. Liquid crystal reorientation under external fields -- 1.5. Customary optics from liquid crystal defects -- 1.5.1. Localized defects structures in frustrated cholesteric films -- 1.5.2. Elongated defects structures in frustrated cholesteric films -- 1.5.3. Regular optics from other topological structures -- 1.5.4. Assembling photonic building blocks with liquid crystal defects -- 1.6. From regular to singular optics -- 1.6.1. What is singular optics? -- 1.6.2. A nod to liquid crystal defects -- 1.6.3. Singular paraxial light beams -- 1.6.4. Generic singular beam shaping strategies -- 1.7. Advent of self-engineered singular optical elements enabled by liquid crystals defects -- 1.7.1. Optical vortices from a cholesteric slab: dynamic phase option -- 1.7.2. Optical vortices from a nematic droplet: geometric phase option -- 1.8. Singular optical functions based on defects: a decade of advances -- 1.8.1. Custom-made singular dynamic phase diffractive -- 1.8.2. Spontaneous singular geometric phase optics -- 1.8.3. Directed self-engineered geometric phase optics -- 1.8.4. From single to arrays of optical vortices -- 1.9. Emerging optical functionalities enabled by liquid crystal defects -- 1.9.1. Spectrally and spatially adaptive optical vortex coronagraphy.
1.9.2. Multispectral management of optical orbital angular momentum -- 1.10. Conclusion -- 1.11. References -- 2. Control of Micro-Particles with Liquid Crystals -- 2.1. Introduction -- 2.2. Control of micro-particles by liquid crystal-enabled electrokinetics -- 2.2.1. Liquid-crystal enabled electrophoresis -- 2.2.2. Liquid crystal-enabled electro-osmosis -- 2.3. Controlled dynamics of microswimmers in nematic liquid crystals -- 2.4. Conclusion -- 2.5. Acknowledgments -- 2.6. References -- 3. Thermomechanical Effects in Liquid Crystals -- 3.1. Introduction -- 3.2. The Ericksen-Leslie equations -- 3.2.1. Conservation equations -- 3.2.2. Molecular field -- 3.2.3. Constitutive equations -- 3.3. Molecular dynamics simulations of the thermomechanical effect -- 3.3.1. Molecular models -- 3.3.2. Constrained ensembles -- 3.3.3. Computation of the transport coefficients -- 3.3.4. Analysis of the results -- 3.4. Experimental evidence of the thermomechanical effect -- 3.4.1. The static Éber and Jánossy experiment -- 3.4.2. Another static experiment proposed in the literature -- 3.4.3. Continuous rotation of translationally invariant configurations -- 3.4.4. Drift of cholesteric fingers under homeotropic anchoring -- 3.5. The thermohydrodynamical effect -- 3.5.1. A proposal for measuring the TH Leslie coefficient μ: theoretical prediction -- 3.5.2. About the measurement of the TH Akopyan and Zel'dovich coefficients -- 3.6. Conclusions and perspectives -- 3.7. References -- 4. Physics of the Dowser Texture -- 4.1. Introduction -- 4.1.1. Disclinations and monopoles -- 4.1.2. Road to the dowser texture -- 4.1.3. The dowser texture -- 4.2. Generation of the dowser texture -- 4.2.1. Setups called "Dowsons Colliders" -- 4.2.2. "Classical" generation of the dowser texture -- 4.2.3. Accelerated generation of the dowser texture using the DDC2 setup.
4.3. Flow-assisted homeotropic ⇒ dowser transition -- 4.3.1. Experiment using the DDC2 setup -- 4.3.2. Flow-assisted bowser-dowser transformation in capillaries -- 4.3.3. Flow-assisted homeotropic-dowser transition in the CDC2 setup -- 4.3.4. Theory of the flow-assisted homeotropic-dowser transition -- 4.3.5. Summary and discussion of experimental results -- 4.4. Rheotropism -- 4.4.1. The first evidence of the rheotropism -- 4.4.2. Synchronous winding of the dowser field -- 4.4.3. Asynchronous winding of the dowser field -- 4.4.4. Hybrid winding of the dowser field with CDC2 -- 4.4.5. Rheotropic behavior of π- and 2π-walls -- 4.4.6. Action of an alternating Poiseuille flow on wound up dowser fields -- 4.5. Cuneitropism, solitary 2π-walls -- 4.5.1. Generation of π-walls by a magnetic field -- 4.5.2. Generation and relaxation of circular 2π-walls -- 4.5.3. Cuneitropic origin of the circular 2π-wall -- 4.6. Electrotropism -- 4.6.1. Definition of the electrotropism -- 4.6.2. Flexo-electric polarization -- 4.6.3. Setup -- 4.6.4. The first evidence of the flexo-electric polarization -- 4.6.5. Measurements of the flexo-electric polarization -- 4.7. Electro-osmosis -- 4.7.1. One-gap system of electrodes -- 4.7.2. Two-gap system of electrodes -- 4.7.3. Convection of the dowser field -- 4.8. Dowser texture as a natural universe of nematic monopoles -- 4.8.1. Structures and topological charges of nematic monopoles -- 4.8.2. Pair of dowsons d+ and d- seen as a pair of monopoles -- 4.8.3. Generation of monopole-antimonopole pairs by breaking 2π-walls -- 4.9. Motions of dowsons in a wound up dowser field -- 4.9.1. Single dowson in a wound up dowser field -- 4.9.2. The Lorentz-like force -- 4.9.3. Velocity of dowsons in wound up dowser fields -- 4.9.4. The race of dowsons -- 4.9.5. Trajectories of dowsons observed in natural light.
4.9.6. Trajectories of dowsons observed in polarized light -- 4.10. Collisions of dowsons -- 4.10.1. Pair of dowsons (d+,d-) inserted in a wound up dowser field -- 4.10.2. Cross-section for annihilation of dowsons' pairs -- 4.10.3. Rheotropic control of the collisions outcome -- 4.11. Motions of dowsons in homogeneous fields -- 4.12. Stabilization of dowsons systems by inhomogeneous fields with defects -- 4.12.1. Gedanken experiment -- 4.12.2. Triplet of dowsons stabilized in MBBA by a quadrupolar electric field -- 4.12.3. Septet of dowsons in MBBA stabilized by a quadrupolar electric field -- 4.12.4. Dowsons d+ stabilized by corner singularities of the electric field -- 4.13. Dowser field submitted to boundary conditions with more complex geometries and topologies -- 4.13.1. Ground state of the dowser field in an annular droplet -- 4.13.2. Wound up metastable states of the dowser field in the annular droplet -- 4.13.3. Dowser field in a square network of channels, four-arm junctions -- 4.13.4. Triangular network, six-arm junctions -- 4.13.5. Three-arm junctions -- 4.13.6. General discussion of n-arm junctions -- 4.14. Flow-induced bowson-dowson transformation -- 4.15. Instability of the dowson's d- position in the stagnation point -- 4.16. Appendix 1: equation of motion of the dowser field -- 4.16.1. Elastic torque -- 4.16.2. Viscous torques -- 4.16.3. Magnetic torque -- 4.16.4. Electric torque -- 4.17. References -- 5. Spontaneous Emergence of Chirality -- 5.1. Introduction -- 5.2. Chirality: a historical tour -- 5.2.1. Chirality and optics -- 5.2.2. Chiral symmetry breaking and its misuse -- 5.2.3. Spontaneous emergence of chirality or chiral structures in liquid crystals -- 5.2.4. Spontaneous emergence of chirality due to confinement -- 5.2.5. Spontaneous emergence of chirality due to cylindrical confinement.
5.2.6. Some misconceptions about optical rotation -- 5.3. Concluding remarks -- 5.4. Acknowledgments -- 5.5. References -- List of Authors -- Index -- EULA.
Record Nr. UNINA-9910555191403321
London, England : , : Wiley-ISTE, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Liquid crystals : new perspectives / / coordinated by Pawel Pieranski, Maria Helena Godinho
Liquid crystals : new perspectives / / coordinated by Pawel Pieranski, Maria Helena Godinho
Pubbl/distr/stampa London, England : , : Wiley-ISTE, , [2021]
Descrizione fisica 1 online resource (373 pages)
Disciplina 530.429
Soggetto topico Liquid crystals
ISBN 1-119-85078-9
1-119-85080-0
1-119-85079-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1. Singular Optics of Liquid Crystal Defects -- 1.1. Prelude from carrots -- 1.2. Liquid crystals, optics and defects: a long-standing trilogy -- 1.3. Polarization optics of liquid crystals: basic ingredients -- 1.3.1. The few liquid crystal phases at play in this chapter -- 1.3.2. Liquid crystals anisotropy and its main optical consequence -- 1.3.3. Polarization state representation in the paraxial regime -- 1.3.4. Polarization state evolution through uniform director fields -- 1.3.5. Effective birefringence -- 1.4. Liquid crystal reorientation under external fields -- 1.5. Customary optics from liquid crystal defects -- 1.5.1. Localized defects structures in frustrated cholesteric films -- 1.5.2. Elongated defects structures in frustrated cholesteric films -- 1.5.3. Regular optics from other topological structures -- 1.5.4. Assembling photonic building blocks with liquid crystal defects -- 1.6. From regular to singular optics -- 1.6.1. What is singular optics? -- 1.6.2. A nod to liquid crystal defects -- 1.6.3. Singular paraxial light beams -- 1.6.4. Generic singular beam shaping strategies -- 1.7. Advent of self-engineered singular optical elements enabled by liquid crystals defects -- 1.7.1. Optical vortices from a cholesteric slab: dynamic phase option -- 1.7.2. Optical vortices from a nematic droplet: geometric phase option -- 1.8. Singular optical functions based on defects: a decade of advances -- 1.8.1. Custom-made singular dynamic phase diffractive -- 1.8.2. Spontaneous singular geometric phase optics -- 1.8.3. Directed self-engineered geometric phase optics -- 1.8.4. From single to arrays of optical vortices -- 1.9. Emerging optical functionalities enabled by liquid crystal defects -- 1.9.1. Spectrally and spatially adaptive optical vortex coronagraphy.
1.9.2. Multispectral management of optical orbital angular momentum -- 1.10. Conclusion -- 1.11. References -- 2. Control of Micro-Particles with Liquid Crystals -- 2.1. Introduction -- 2.2. Control of micro-particles by liquid crystal-enabled electrokinetics -- 2.2.1. Liquid-crystal enabled electrophoresis -- 2.2.2. Liquid crystal-enabled electro-osmosis -- 2.3. Controlled dynamics of microswimmers in nematic liquid crystals -- 2.4. Conclusion -- 2.5. Acknowledgments -- 2.6. References -- 3. Thermomechanical Effects in Liquid Crystals -- 3.1. Introduction -- 3.2. The Ericksen-Leslie equations -- 3.2.1. Conservation equations -- 3.2.2. Molecular field -- 3.2.3. Constitutive equations -- 3.3. Molecular dynamics simulations of the thermomechanical effect -- 3.3.1. Molecular models -- 3.3.2. Constrained ensembles -- 3.3.3. Computation of the transport coefficients -- 3.3.4. Analysis of the results -- 3.4. Experimental evidence of the thermomechanical effect -- 3.4.1. The static Éber and Jánossy experiment -- 3.4.2. Another static experiment proposed in the literature -- 3.4.3. Continuous rotation of translationally invariant configurations -- 3.4.4. Drift of cholesteric fingers under homeotropic anchoring -- 3.5. The thermohydrodynamical effect -- 3.5.1. A proposal for measuring the TH Leslie coefficient μ: theoretical prediction -- 3.5.2. About the measurement of the TH Akopyan and Zel'dovich coefficients -- 3.6. Conclusions and perspectives -- 3.7. References -- 4. Physics of the Dowser Texture -- 4.1. Introduction -- 4.1.1. Disclinations and monopoles -- 4.1.2. Road to the dowser texture -- 4.1.3. The dowser texture -- 4.2. Generation of the dowser texture -- 4.2.1. Setups called "Dowsons Colliders" -- 4.2.2. "Classical" generation of the dowser texture -- 4.2.3. Accelerated generation of the dowser texture using the DDC2 setup.
4.3. Flow-assisted homeotropic ⇒ dowser transition -- 4.3.1. Experiment using the DDC2 setup -- 4.3.2. Flow-assisted bowser-dowser transformation in capillaries -- 4.3.3. Flow-assisted homeotropic-dowser transition in the CDC2 setup -- 4.3.4. Theory of the flow-assisted homeotropic-dowser transition -- 4.3.5. Summary and discussion of experimental results -- 4.4. Rheotropism -- 4.4.1. The first evidence of the rheotropism -- 4.4.2. Synchronous winding of the dowser field -- 4.4.3. Asynchronous winding of the dowser field -- 4.4.4. Hybrid winding of the dowser field with CDC2 -- 4.4.5. Rheotropic behavior of π- and 2π-walls -- 4.4.6. Action of an alternating Poiseuille flow on wound up dowser fields -- 4.5. Cuneitropism, solitary 2π-walls -- 4.5.1. Generation of π-walls by a magnetic field -- 4.5.2. Generation and relaxation of circular 2π-walls -- 4.5.3. Cuneitropic origin of the circular 2π-wall -- 4.6. Electrotropism -- 4.6.1. Definition of the electrotropism -- 4.6.2. Flexo-electric polarization -- 4.6.3. Setup -- 4.6.4. The first evidence of the flexo-electric polarization -- 4.6.5. Measurements of the flexo-electric polarization -- 4.7. Electro-osmosis -- 4.7.1. One-gap system of electrodes -- 4.7.2. Two-gap system of electrodes -- 4.7.3. Convection of the dowser field -- 4.8. Dowser texture as a natural universe of nematic monopoles -- 4.8.1. Structures and topological charges of nematic monopoles -- 4.8.2. Pair of dowsons d+ and d- seen as a pair of monopoles -- 4.8.3. Generation of monopole-antimonopole pairs by breaking 2π-walls -- 4.9. Motions of dowsons in a wound up dowser field -- 4.9.1. Single dowson in a wound up dowser field -- 4.9.2. The Lorentz-like force -- 4.9.3. Velocity of dowsons in wound up dowser fields -- 4.9.4. The race of dowsons -- 4.9.5. Trajectories of dowsons observed in natural light.
4.9.6. Trajectories of dowsons observed in polarized light -- 4.10. Collisions of dowsons -- 4.10.1. Pair of dowsons (d+,d-) inserted in a wound up dowser field -- 4.10.2. Cross-section for annihilation of dowsons' pairs -- 4.10.3. Rheotropic control of the collisions outcome -- 4.11. Motions of dowsons in homogeneous fields -- 4.12. Stabilization of dowsons systems by inhomogeneous fields with defects -- 4.12.1. Gedanken experiment -- 4.12.2. Triplet of dowsons stabilized in MBBA by a quadrupolar electric field -- 4.12.3. Septet of dowsons in MBBA stabilized by a quadrupolar electric field -- 4.12.4. Dowsons d+ stabilized by corner singularities of the electric field -- 4.13. Dowser field submitted to boundary conditions with more complex geometries and topologies -- 4.13.1. Ground state of the dowser field in an annular droplet -- 4.13.2. Wound up metastable states of the dowser field in the annular droplet -- 4.13.3. Dowser field in a square network of channels, four-arm junctions -- 4.13.4. Triangular network, six-arm junctions -- 4.13.5. Three-arm junctions -- 4.13.6. General discussion of n-arm junctions -- 4.14. Flow-induced bowson-dowson transformation -- 4.15. Instability of the dowson's d- position in the stagnation point -- 4.16. Appendix 1: equation of motion of the dowser field -- 4.16.1. Elastic torque -- 4.16.2. Viscous torques -- 4.16.3. Magnetic torque -- 4.16.4. Electric torque -- 4.17. References -- 5. Spontaneous Emergence of Chirality -- 5.1. Introduction -- 5.2. Chirality: a historical tour -- 5.2.1. Chirality and optics -- 5.2.2. Chiral symmetry breaking and its misuse -- 5.2.3. Spontaneous emergence of chirality or chiral structures in liquid crystals -- 5.2.4. Spontaneous emergence of chirality due to confinement -- 5.2.5. Spontaneous emergence of chirality due to cylindrical confinement.
5.2.6. Some misconceptions about optical rotation -- 5.3. Concluding remarks -- 5.4. Acknowledgments -- 5.5. References -- List of Authors -- Index -- EULA.
Record Nr. UNINA-9910830145703321
London, England : , : Wiley-ISTE, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui