Introduction a l'analyse Numerique / / Jacques Rappaz, Marco Picasso
| Introduction a l'analyse Numerique / / Jacques Rappaz, Marco Picasso |
| Autore | Rappaz Jacques <1947-> |
| Pubbl/distr/stampa | Lausanne : , : EPFL Press, , [2017] |
| Descrizione fisica | 1 online resource (266 pages) |
| Disciplina | 519.4 |
| Soggetto topico | Numerical analysis |
| ISBN | 2-88914-572-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | fre |
| Record Nr. | UNINA-9910794404203321 |
Rappaz Jacques <1947->
|
||
| Lausanne : , : EPFL Press, , [2017] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Introduction a l'analyse Numerique / / Jacques Rappaz, Marco Picasso
| Introduction a l'analyse Numerique / / Jacques Rappaz, Marco Picasso |
| Autore | Rappaz Jacques <1947-> |
| Pubbl/distr/stampa | Lausanne : , : EPFL Press, , [2017] |
| Descrizione fisica | 1 online resource (266 pages) |
| Disciplina | 519.4 |
| Soggetto topico | Numerical analysis |
| ISBN | 2-88914-572-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | fre |
| Record Nr. | UNINA-9910820004103321 |
Rappaz Jacques <1947->
|
||
| Lausanne : , : EPFL Press, , [2017] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Introduction a l'analyse Numerique / / Jacques Rappaz, Marco Picasso
| Introduction a l'analyse Numerique / / Jacques Rappaz, Marco Picasso |
| Autore | Rappaz Jacques <1947-> |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Lausanne : , : EPFL Press, , [2011] |
| Descrizione fisica | 1 online resource (265 pages) |
| Disciplina | 519.4 |
| Soggetto topico | Numerical analysis |
| ISBN | 2-88914-275-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | fre |
| Record Nr. | UNINA-9910792391903321 |
Rappaz Jacques <1947->
|
||
| Lausanne : , : EPFL Press, , [2011] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Introduction a l'analyse Numerique / / Jacques Rappaz, Marco Picasso
| Introduction a l'analyse Numerique / / Jacques Rappaz, Marco Picasso |
| Autore | Rappaz Jacques <1947-> |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Lausanne : , : EPFL Press, , [2011] |
| Descrizione fisica | 1 online resource (265 pages) |
| Disciplina | 519.4 |
| Soggetto topico | Numerical analysis |
| ISBN | 2-88914-275-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | fre |
| Record Nr. | UNINA-9910825082503321 |
Rappaz Jacques <1947->
|
||
| Lausanne : , : EPFL Press, , [2011] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Introduction à l'analyse Numérique
| Introduction à l'analyse Numérique |
| Autore | Rappaz Jacques |
| Pubbl/distr/stampa | Lausanne : , : EPFL Press, , 2017 |
| Descrizione fisica | 1 online resource (266 pages) |
| Altri autori (Persone) | PicassoMarco |
| Soggetto genere / forma | Electronic books. |
| ISBN | 2-88914-572-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | fre |
| Record Nr. | UNINA-9910493199903321 |
Rappaz Jacques
|
||
| Lausanne : , : EPFL Press, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Introduction à l'analyse Numérique
| Introduction à l'analyse Numérique |
| Autore | Rappaz Jacques |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Lausanne : , : EPFL Press, , 2011 |
| Descrizione fisica | 1 online resource (265 pages) |
| Altri autori (Persone) | PicassoMarco |
| Soggetto genere / forma | Electronic books. |
| ISBN | 2-88914-275-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | fre |
| Record Nr. | UNINA-9910493225003321 |
Rappaz Jacques
|
||
| Lausanne : , : EPFL Press, , 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
| Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Berlin ; ; Boston : , : De Gruyter, , [2025] |
| Descrizione fisica | 1 online resource (X, 202 p.) |
| Collana | De Gruyter Proceedings in Mathematics |
| Soggetto topico | MATHEMATICS / Optimization |
| Soggetto non controllato | Mathematical optimization, Machine learning, Nonlinear optimization, Discrete optimization, Physics informed learning |
| ISBN |
3-11-137774-1
3-11-137677-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface -- Acknowledgment -- Contents -- A framework to solve inverse problems for parametric PDEs using adaptive finite elements and neural networks -- Generation of value function data for bilevel optimal control and application to hybrid electric vehicle -- Graph neural networks to predict strokes from blood flow simulations -- Capturing the macroscopic behavior of molecular dynamics with membership functions -- Adaptive gradient-enhanced Gaussian process surrogates for inverse problems -- Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems -- Constrained piecewise linear optimization by an active signature method -- Parallel trust-region approaches in neural network training -- Trustworthy optimization learning: a brief overview -- Compression-aware training of neural networks using Frank–Wolfe -- Approximation of generalized frequency response functions via vector fitting -- On the nonsmooth regularity condition LIKQ for different abs-normal representations -- Divergence of the ADAM algorithm with fixed-stepsize: a (very) simple example -- Index |
| Record Nr. | UNISA-996657772003316 |
| Berlin ; ; Boston : , : De Gruyter, , [2025] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
| Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Berlin ; ; Boston : , : De Gruyter, , [2025] |
| Descrizione fisica | 1 online resource (X, 202 p.) |
| Collana | De Gruyter Proceedings in Mathematics |
| Soggetto topico | MATHEMATICS / Optimization |
| Soggetto non controllato | Mathematical optimization, Machine learning, Nonlinear optimization, Discrete optimization, Physics informed learning |
| ISBN |
3-11-137774-1
3-11-137677-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface -- Acknowledgment -- Contents -- A framework to solve inverse problems for parametric PDEs using adaptive finite elements and neural networks -- Generation of value function data for bilevel optimal control and application to hybrid electric vehicle -- Graph neural networks to predict strokes from blood flow simulations -- Capturing the macroscopic behavior of molecular dynamics with membership functions -- Adaptive gradient-enhanced Gaussian process surrogates for inverse problems -- Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems -- Constrained piecewise linear optimization by an active signature method -- Parallel trust-region approaches in neural network training -- Trustworthy optimization learning: a brief overview -- Compression-aware training of neural networks using Frank–Wolfe -- Approximation of generalized frequency response functions via vector fitting -- On the nonsmooth regularity condition LIKQ for different abs-normal representations -- Divergence of the ADAM algorithm with fixed-stepsize: a (very) simple example -- Index |
| Record Nr. | UNINA-9911024074903321 |
| Berlin ; ; Boston : , : De Gruyter, , [2025] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Numerical Mathematics and Advanced Applications - ENUMATH 2013 : Proceedings of ENUMATH 2013, the 10th European Conference on Numerical Mathematics and Advanced Applications, Lausanne, August 2013 / / edited by Assyr Abdulle, Simone Deparis, Daniel Kressner, Fabio Nobile, Marco Picasso
| Numerical Mathematics and Advanced Applications - ENUMATH 2013 : Proceedings of ENUMATH 2013, the 10th European Conference on Numerical Mathematics and Advanced Applications, Lausanne, August 2013 / / edited by Assyr Abdulle, Simone Deparis, Daniel Kressner, Fabio Nobile, Marco Picasso |
| Edizione | [1st ed. 2015.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 |
| Descrizione fisica | 1 online resource (759 p.) |
| Disciplina | 004.0151 |
| Collana | Lecture Notes in Computational Science and Engineering |
| Soggetto topico |
Computer science - Mathematics
Mathematical models Computer software Computational Science and Engineering Mathematical Modeling and Industrial Mathematics Mathematical Software |
| ISBN | 3-319-10705-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Part I: Space Discretisation Methods for PDEs -- Part II: Time Integration Schemes -- Part III: A Posteriori Error Estimation and Adaptive Methods -- Part IV: Numerical Linear Algebra -- Part V: Multiscale Modeling and Simulation -- Part VI: Reduced Order Modeling -- Part VII: Optimal Control -- Part VIII: Uncertainty, Stochastic Modeling and Applications -- Part IX: Solvers, High Performance Computing and Software Libraries -- Part X: Computational Fluid and Structural Mechanics -- Part XI: Computational Electromagnetics. |
| Record Nr. | UNINA-9910299778203321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||