top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Component-Based Software Quality [[electronic resource] ] : Methods and Techniques / / edited by Alejandra Cechich, Mario Piattini, Antonio Vallecillo
Component-Based Software Quality [[electronic resource] ] : Methods and Techniques / / edited by Alejandra Cechich, Mario Piattini, Antonio Vallecillo
Edizione [1st ed. 2003.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003
Descrizione fisica 1 online resource (X, 410 p.)
Disciplina 005.3
Collana Lecture Notes in Computer Science
Soggetto topico Computer industry
Software engineering
Management information systems
Computer science
The Computer Industry
Software Engineering
Management of Computing and Information Systems
ISBN 3-540-45064-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Assessing Component-Based Systems -- Assessing Component-Based Systems -- I COTS Selection -- COTS-Based Requirements Engineering -- Domain-Based COTS-Product Selection Method -- STACE: Social Technical Approach to COTS Software Evaluation -- SCARLET: Integrated Process and Tool Support for Selecting Software Components -- II Testing and Certification -- Component-Based Software: An Overview of Testing -- Setting a Framework for Trusted Component Trading -- Component Integration through Built-in Contract Testing -- III Software Component Quality Models -- Quality Characteristics for Software Components: Hierarchy and Quality Guides -- Driving Component-Based Software Development through Quality Modelling -- Towards a Quality Model for the Selection of ERP Systems -- Maturing Architectures and Components in Software Product Lines -- IV Formal Approaches to Quality Assessment -- Assessment of High Integrity Software Components for Completeness, Consistency, Fault-Tolerance, and Reliability -- Reasoning about Software Architectures with Contractually Specified Components -- Reuse of Formal Verification Efforts of Incomplete Models at the Requirements Specification Stage -- V CBSD Management -- Risk Management of COTS Based Systems Development -- A Metrics-Guided Framework for Cost and Quality Management of Component-Based Software.
Record Nr. UNISA-996466055103316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Component-Based Software Quality : Methods and Techniques / / edited by Alejandra Cechich, Mario Piattini, Antonio Vallecillo
Component-Based Software Quality : Methods and Techniques / / edited by Alejandra Cechich, Mario Piattini, Antonio Vallecillo
Edizione [1st ed. 2003.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003
Descrizione fisica 1 online resource (X, 410 p.)
Disciplina 005.3
Collana Lecture Notes in Computer Science
Soggetto topico Computer industry
Software engineering
Management information systems
Computer science
The Computer Industry
Software Engineering
Management of Computing and Information Systems
ISBN 3-540-45064-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Assessing Component-Based Systems -- Assessing Component-Based Systems -- I COTS Selection -- COTS-Based Requirements Engineering -- Domain-Based COTS-Product Selection Method -- STACE: Social Technical Approach to COTS Software Evaluation -- SCARLET: Integrated Process and Tool Support for Selecting Software Components -- II Testing and Certification -- Component-Based Software: An Overview of Testing -- Setting a Framework for Trusted Component Trading -- Component Integration through Built-in Contract Testing -- III Software Component Quality Models -- Quality Characteristics for Software Components: Hierarchy and Quality Guides -- Driving Component-Based Software Development through Quality Modelling -- Towards a Quality Model for the Selection of ERP Systems -- Maturing Architectures and Components in Software Product Lines -- IV Formal Approaches to Quality Assessment -- Assessment of High Integrity Software Components for Completeness, Consistency, Fault-Tolerance, and Reliability -- Reasoning about Software Architectures with Contractually Specified Components -- Reuse of Formal Verification Efforts of Incomplete Models at the Requirements Specification Stage -- V CBSD Management -- Risk Management of COTS Based Systems Development -- A Metrics-Guided Framework for Cost and Quality Management of Component-Based Software.
Record Nr. UNINA-9910143859703321
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data Governance : From the Fundamentals to Real Cases / / Ismael Caballero and Mario Piattini, editors
Data Governance : From the Fundamentals to Real Cases / / Ismael Caballero and Mario Piattini, editors
Edizione [First edition.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (255 pages)
Disciplina 658.4038
Soggetto topico Knowledge management
Management information systems
ISBN 3-031-43773-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword by Yang Lee -- Foreword by Alberto Palomo -- Preface -- Overview -- Organization -- Part I: Data Governance Fundamentals -- Part II: Data Governance Applied -- Target Readership -- Acknowledgments -- Contents -- Contributors -- List of Abbreviations -- Part I: Data Governance Fundamentals -- Chapter 1: Introduction to Data Governance: A Bespoke Program Is Required for Success -- 1.1 Chapter Overview -- 1.2 Why Does Data Need to Be Governed? -- 1.2.1 Long-Lasting Consequences of Poor Data Decisions? -- 1.2.2 Mounting Data Debt -- 1.3 Who Needs to Be Involved in DG? -- 1.4 When Is It Appropriate for Organizations to Invest in DG? -- 1.5 Where Should Organizations Get Started with DG? -- 1.6 How Should Organizations Apportion Their DG Efforts Over Time? -- 1.6.1 Data Debt´s Impact -- 1.6.2 Proactive Versus Reactive DG -- 1.6.3 MacGyver Abilities -- 1.7 What Organizational Needs Does DG Fill? -- 1.7.1 Improving the Ways That Data Is Treated as an Asset? -- 1.7.2 Available but Not Widely Known Research Results -- 1.7.3 Using Data to Better Support the Organizational Mission -- 1.7.4 The Role of DG Frameworks -- 1.7.4.1 Related Term Definitions -- 1.7.4.2 A Small Concentrated Team Is Preferred Over Distributed (Dissipated) Knowledge -- 1.7.5 Using Data Strategically -- 1.7.5.1 Strategy Is About Why -- 1.7.5.2 What Is Data Strategy? -- 1.7.5.3 Working Together: Data and Organizational Strategy? -- 1.7.5.4 Strategic Commitment: Program Versus Project Focus -- 1.7.5.5 Digitizationing -- 1.7.5.6 A Watchful Eye Toward the US Federal Government (FEPA) -- 1.7.6 Breaking Through the Barriers of Data Governance -- 1.8 Chapter Summary -- Chapter 2: Data Strategy and Policies: The Role of Data Governance in Data Ecosystems -- 2.1 Introduction -- 2.2 Data Strategy and Policies -- 2.2.1 Data Strategy Fundamentals.
2.2.2 From Defensive to Offensive Data Strategy -- 2.2.3 Data Policies -- 2.3 New Development Trajectories for Data Governance -- 2.3.1 Data as Strategic Asset for Organizations -- 2.3.2 The Emergence of Data Ecosystems -- 2.4 Widening the Scope of Data Governance Operations -- 2.4.1 Consideration of Challenging External Influencing Factors -- 2.4.2 Bridging the Intra-organizational Perspective on Data Governance with the Inter-organizational Perspective -- 2.5 Utilizing Data Ecosystems as Part of Data Strategy -- 2.5.1 The Role of Ecosystem Data Governance -- 2.5.2 Inter-organizational Data Governance Modes -- 2.5.3 Adequate Positioning for Engaging in Data Ecosystems -- 2.6 Recommendations for Action -- 2.6.1 Recommendations for Actions for Single Organizations -- 2.6.2 Recommendations for Actions for Data Ecosystem Design -- References -- Chapter 3: Human Resources Management and Data Governance Roles: Executive Sponsor, Data Governors, and Data Stewards -- 3.1 Introduction -- 3.2 The Role of Human Resources in Data Governance -- 3.3 Understanding the Structure of the Data Governance Organization -- 3.3.1 Executive Steering Committee -- 3.3.2 Data Governance Board -- 3.3.3 Data Stewardship Council -- 3.3.4 Data Governance Program Office (DGPO) -- 3.3.4.1 Data Governance Program Office (DGPO) Responsibilities -- 3.3.4.2 Data Governance Manager Responsibilities -- 3.3.4.3 Enterprise Data Steward Responsibilities -- 3.4 Key Roles and Responsibilities for Data Stewards -- 3.4.1 Business Data Stewards -- 3.4.2 Technical Data Stewards -- 3.4.3 Operational Data Stewards -- 3.4.4 Project Data Stewards -- 3.5 Summary -- Chapter 4: Data Value and Monetizing Data -- 4.1 Managing Data as an Actual Asset -- 4.1.1 The Emergence of the Chief Data Officer -- 4.1.2 Approaches to Data Asset Management -- 4.1.3 Data´s Emergence as a Real Economic Asset.
4.1.4 The Need for Senior Executive Understanding -- 4.2 Impediments to Maturity in Enterprise Data Management -- 4.2.1 Leadership Issues -- 4.2.2 IM Priorities Over Which You Have Control or Influence -- 4.2.3 Resources Needed to Advance Data Management Capabilities -- 4.2.4 Negative Cultural Attitudes About Data Management -- 4.2.5 Overcoming the Barriers to Data Asset Management -- 4.2.6 Moving Forward -- 4.3 Generally Agreed-Upon Data Principles (GAIP) -- 4.4 Data Supply Chains and Ecosystems -- 4.4.1 Adapting the SCOR Model -- 4.4.2 Metrics for the Data Supply Chain -- 4.5 A New Model for the Data Supply Chain -- 4.6 Data Ecosystems -- 4.6.1 Data Within an Ecosystem -- 4.6.2 Ecosystem Entities -- 4.6.3 Ecosystem Features -- 4.6.4 Ecosystem Processes -- 4.6.5 Ecosystem Influences -- 4.6.6 Ecosystem Management -- 4.7 Applying Sustainability Concepts to Managing Data -- 4.8 Data Management Standards -- 4.8.1 Adapting IT Asset Management (ITAM) to Data Management -- 4.8.2 Adapting ITIL to Data Management -- 4.8.3 Adaptations from RIM and ECM -- 4.8.4 Adaptations from Library Science -- 4.8.5 Adaptations from Physical Asset Management -- 4.8.6 Adaptations from Financial Management -- Chapter 5: Data Governance Methodologies: The CC CDQ Reference Model for Data and Analytics Governance -- 5.1 Introduction -- 5.2 Paradigm Shifts in Data Governance: From Control to Value Creation -- 5.2.1 Data Governance: Definition and Mechanisms -- 5.2.2 Data Governance 1.0: Focus on Control, Data Quality, and Regulatory Compliance -- 5.2.3 Data Governance 2.0: Extending Beyond Control to Enable Value Creation -- 5.2.4 Need for Guidelines Supporting Data and Analytics Governance -- 5.3 The CC CDQ Reference Model for Data and Analytics Governance -- 5.3.1 Data Governance as Key Theme in the Competence Center Corporate Data Quality.
5.3.2 Design Principles for Data and Analytics Governance -- 5.3.2.1 Principle 1: Governance Linking Strategy to Operations -- 5.3.2.2 Principle 2: Federated Data Governance Involving Data and Analytics, Business, and IT Experts -- 5.3.2.3 Overview of the CC CDQ Reference Model for Data and Analytics Governance -- 5.4 Step 1: Set the Scope for Data and Analytics Governance -- 5.4.1 End-to-End Perspective for Defining Scope and Requirements -- 5.4.2 Data and Analytics Products and Their Information Supply Chains -- 5.5 Step 2: Who to Govern? - Processes, Roles, and Responsibilities -- 5.5.1 Decision Areas (Processes) -- 5.5.2 Data and Analytics Roles -- 5.5.2.1 Data Management Roles and Responsibilities -- 5.5.2.2 Analytics Roles and Responsibilities -- 5.5.2.3 Organization-Wide Coordination of Data and Analytics -- 5.5.3 Assigning Roles to Responsibilities -- 5.6 Step 3: How to Govern? - Deriving the Operating Model -- 5.6.1 Mapping Roles, Responsibilities, and Processes to the Organizational Context -- 5.6.1.1 Typical Configurations -- 5.7 Summary -- References -- Chapter 6: Data Governance Tools -- 6.1 Introduction -- 6.2 The Business Need for Data Governance and Its Importance -- 6.2.1 Common Business Outcomes Led by Chief Data Officers -- 6.3 Case Study: Southwest Airlines and the Role of Technology on Business Outcomes -- 6.3.1 Data Challenges in the Transportation Industry -- 6.4 Key Functionalities Needed in the Data Governance Tools -- 6.4.1 Twelve Technology Features Chief Data Officers Can Use to Become Data-Driven -- 6.4.2 Data Governance Technology Challenges -- 6.5 Four Must-Have Technology Focus Areas to Kick-start Data Governance -- 6.5.1 Flexible Operating Model -- 6.5.1.1 Insurance Customer Story -- 6.5.2 Identification of Data Domains -- 6.5.2.1 Financial Services Customer Story.
6.5.3 Identification of Critical Data Elements (CDEs) Within Data Domains -- 6.5.3.1 Federal Government Agency in Washington, D.C., Story -- 6.5.3.2 Technology Company Story -- 6.5.4 Enable Control Measurements -- 6.5.4.1 Technology Company Out of California Story -- 6.6 Conclusion -- Chapter 7: Maturity Models for Data Governance -- 7.1 Introduction -- 7.2 Maturity Models -- 7.2.1 DAMA -- 7.2.2 Aiken´s Model -- 7.2.3 Data Management Maturity (DMM) Model -- 7.2.4 IBM Model -- 7.2.5 Gartner´s Enterprise Information Management Model -- 7.2.6 DCAM -- 7.3 MAMD (Alarcos´ Model for Data Maturity) -- 7.3.1 ISO/IEC 33000 Standards Family -- 7.3.2 MAMD Overview -- 7.3.3 The Capability Dimension -- 7.3.4 Process Dimension -- 7.3.5 Organizational Maturity Model -- 7.4 Practical Applications of MAMD -- 7.4.1 Regional Government: Improving the Performance of Authentication Servers -- 7.4.2 Insurance Company: Building a ``Source of Truth´´ Repository -- 7.4.3 Bicycle Manufacturer: Enabling Better Analytics -- 7.4.4 Telco Company: Building a Data Marketplace -- 7.4.5 Hospital/Faculty of Medicine: Assessing the Organizational Maturity -- 7.4.6 University Library: Assessing the Organizational Maturity -- 7.4.7 DQIoT: Developing a MAMD-Based Maturity Model for IoT -- 7.4.8 Regional Institute of Statistics: Developing a MAMD-Based Model for the Official Statistics Domain -- 7.4.9 CODE.CLINIC: Tailoring MAMD for Coding Clinical Data -- References -- Part II: Data Governance Applied -- Chapter 8: Data Governance in the Banking Sector -- 8.1 Inception, Challenges, and Evolution -- 8.2 Data-Driven Bank -- 8.3 Data Stewardship -- 8.4 Single Data Marketplace Ecosystem (SDM) -- 8.5 DM& -- G Dashboard -- 8.5.1 Overview -- 8.5.2 Forecast -- 8.5.3 Data Value -- 8.6 Data as a Service (DaaS) -- 8.7 The Magic Algorithm -- Chapter 9: Data Has the Power to Transform Society.
9.1 Introduction.
Record Nr. UNINA-9910799479403321
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Green in Software Engineering / / edited by Coral Calero, Mario Piattini
Green in Software Engineering / / edited by Coral Calero, Mario Piattini
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (329 p.)
Disciplina 004
005.1
005.74
338.47004
338.927
658514
Soggetto topico Software engineering
Management information systems
Computer science
Sustainable development
Management
Industrial management
Computer industry
Computers and civilization
Software Engineering
Management of Computing and Information Systems
Sustainable Development
Innovation/Technology Management
The Computer Industry
Computers and Society
ISBN 3-319-08581-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I Introduction -- 1 Introduction to Green in Software Engineering -- Part II Environments, Processes and Construction -- 2 Green Software Engineering Environments -- 3 Processes for Green and Sustainable Software Engineering -- 4 Constructing Green Software Services: from Service Models to Cloud-based Architecture -- Part III Economic and Other Qualities -- 5 Economic Aspects of Green ICT -- 6 Green Software Quality Factors -- Part IV Software Development Process -- 7 From Requirements Engineering to Green Requirements Engineering -- 8 Towards Green Software Testing -- 9 Green Software Maintenance -- 10 Green Software and Software Quality -- 11 Green Software Measurement -- Part V Practical Issues -- 12 A Decision Making Model for Adopting GreenICT Strategies -- 13 Participation and Open Innovation for Sustainable Software Engineering.
Record Nr. UNINA-9910299235503321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum Software : Aspects of Theory and System Design / / edited by Iaakov Exman, Ricardo Pérez-Castillo, Mario Piattini, Michael Felderer
Quantum Software : Aspects of Theory and System Design / / edited by Iaakov Exman, Ricardo Pérez-Castillo, Mario Piattini, Michael Felderer
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (XVII, 355 p. 115 illus., 99 illus. in color.)
Disciplina 005.1
Soggetto topico Software engineering
Quantum computers
Software Engineering
Quantum Computing
ISBN 3-031-64136-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. A Novel Perception of Quantum Software -- Part 1: Aspects of Quantum Software Theory -- 2. Simulating Quantum Software with Density Matrices -- 3. Superoperators for Quantum Software Engineering -- Part II: Quantum Software System Design -- 4. QSandbox: The Agile Quantum Software Sandbox -- 5. Verification and Validation of Quantum Software -- 6. Quantum Software Quality Metrics -- 7. Quantum Software Ecosystem Design -- 8. Development and Deployment of Quantum Services -- 9. Engineering Hybrid Software Systems -- Part III: Quantum Software Laboratory -- 10. Trapped-Ion Quantum Computing -- 11. Quantum Software Engineering & Programming Applied to Personalized Pharmacogenomics -- 12. Challenges for Quantum Software Engineering -- 13. Quantum Software Engineering Issues and Challenges.
Record Nr. UNINA-9910882893903321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum Software Engineering [[electronic resource] /] / edited by Manuel A. Serrano, Ricardo Pérez-Castillo, Mario Piattini
Quantum Software Engineering [[electronic resource] /] / edited by Manuel A. Serrano, Ricardo Pérez-Castillo, Mario Piattini
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (321 pages)
Disciplina 004.1
Soggetto topico Software engineering
Quantum computers
Software Engineering
Quantum Computing
ISBN 3-031-05324-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Elías F. Combarro, Quantum Computing Foundations -- 2 Mario Piattini and Juan Manuel Murillo, Quantum software engineering landscape and challenges -- 3 Miguel Ángel Blanco and Manuel Serrano, Quantum Information Technology Governance System -- 4 Benjamin Weder et al., Quantum Software Development Lifecycle -- 5 Carmelo Cartiere, Formal Methods for Quantum Software Engineering -- 6 Carlos A. Pérez-Delgado, A Quantum Software Modeling Language -- 7 Iaakov Exman and Alon Tsalik Shmilovich, Quantum Software Models: Density Matrix for Universal Software Design -- 8 David Valencia et al., Quantum Service Oriented Architectures: from hybrid classical approaches to future standalone solutions -- 9 Antonio García de la Barrera at al., Quantum Software Testing – Current trends & Emerging proposals -- 10 Miguel-Angel Sicilia at al., Quantum software measurement -- 11 Luis Jiménez-Navajas at al., Quantum Software Modernization -- 12 José A. Cruz-Lemus and Manuel Serrano, Quantum software tools overview -- 13 Guido Peterssen at al., Quantum software development with QuantumPath® -- 14 Nir Minerbi, Quantum Software Development with Classiq -- 15 Filipa Ramos Ferreir et al., Quantum Software Frameworks for Deep Learning.
Record Nr. UNISA-996495563203316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Quantum Software Engineering / / edited by Manuel A. Serrano, Ricardo Pérez-Castillo, Mario Piattini
Quantum Software Engineering / / edited by Manuel A. Serrano, Ricardo Pérez-Castillo, Mario Piattini
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (321 pages)
Disciplina 004.1
005.1
Soggetto topico Software engineering
Quantum computers
Software Engineering
Quantum Computing
ISBN 3-031-05324-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Elías F. Combarro, Quantum Computing Foundations -- 2 Mario Piattini and Juan Manuel Murillo, Quantum software engineering landscape and challenges -- 3 Miguel Ángel Blanco and Manuel Serrano, Quantum Information Technology Governance System -- 4 Benjamin Weder et al., Quantum Software Development Lifecycle -- 5 Carmelo Cartiere, Formal Methods for Quantum Software Engineering -- 6 Carlos A. Pérez-Delgado, A Quantum Software Modeling Language -- 7 Iaakov Exman and Alon Tsalik Shmilovich, Quantum Software Models: Density Matrix for Universal Software Design -- 8 David Valencia et al., Quantum Service Oriented Architectures: from hybrid classical approaches to future standalone solutions -- 9 Antonio García de la Barrera at al., Quantum Software Testing – Current trends & Emerging proposals -- 10 Miguel-Angel Sicilia at al., Quantum software measurement -- 11 Luis Jiménez-Navajas at al., Quantum Software Modernization -- 12 José A. Cruz-Lemus and Manuel Serrano, Quantum software tools overview -- 13 Guido Peterssen at al., Quantum software development with QuantumPath® -- 14 Nir Minerbi, Quantum Software Development with Classiq -- 15 Filipa Ramos Ferreir et al., Quantum Software Frameworks for Deep Learning.
Record Nr. UNINA-9910616389803321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui