top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Introduction to Python in earth science data analysis : from descriptive statistics to machine learning / / Maurizio Petrelli
Introduction to Python in earth science data analysis : from descriptive statistics to machine learning / / Maurizio Petrelli
Autore Petrelli Maurizio
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (229 pages)
Disciplina 550.285
Collana Springer textbooks in earth sciences, geography and environment
Soggetto topico Geology - Data processing
ISBN 3-030-78055-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Overview -- Let me Introduce Myself -- Organization of Book -- Styling Conventions -- Shared Codes -- Involvement and Collaborations -- Contents -- Part I Python for Geologists: A Kickoff -- 1 Setting Up Your Python Environment, Easily -- 1.1 The Python Programming Language -- 1.2 Programming Paradigms -- 1.3 A Local Python Environment for Scientific Computing -- 1.4 Remote Python Environments -- 1.5 Python Packages for Scientific Applications -- 1.6 Python Packages Specifically Developed for Geologists -- 2 Python Essentials for a Geologist -- 2.1 Start Working with IPython Console -- 2.2 Naming and Style Conventions -- 2.3 Working with Python Scripts -- 2.4 Conditional Statements, Indentation, Loops, and Functions -- 2.5 Importing External Libraries -- 2.6 Basic Operations and Mathematical Functions -- 3 Solving Geology Problems Using Python: An Introduction -- 3.1 My First Binary Diagram Using Python -- 3.2 Making Our First Models in Earth Science -- 3.3 Quick Intro to Spatial Data Representation -- Part II Describing Geological Data -- 4 Graphical Visualization of a Geological Data Set -- 4.1 Statistical Description of a Data Set: Key Concepts -- 4.2 Visualizing Univariate Sample Distributions -- 4.3 Preparing Publication-Ready Binary Diagrams -- 4.4 Visualization of Multivariate Data: A First Attempt -- 5 Descriptive Statistics 1: Univariate Analysis -- 5.1 Basics of Descriptive Statistics -- 5.2 Location -- 5.3 Dispersion or Scale -- 5.4 Skewness -- 5.5 Descriptive Statistics in Pandas -- 5.6 Box Plots -- 6 Descriptive Statistics 2: Bivariate Analysis -- 6.1 Covariance and Correlation -- 6.2 Simple Linear Regression -- 6.3 Polynomial Regression -- 6.4 Nonlinear Regression -- Part III Integrals and Differential Equations in Geology -- 7 Numerical Integration -- 7.1 Definite Integrals.
7.2 Basic Properties of Integrals -- 7.3 Analytical and Numerical Solutions of Definite Integrals -- 7.4 Fundamental Theorem of Calculus and Analytical Solutions -- 7.5 Numerical Solutions of Definite Integrals -- 7.6 Computing the Volume of Geological Structures -- 7.7 Computing the Lithostatic Pressure -- 8 Differential Equations -- 8.1 Introduction -- 8.2 Ordinary Differential Equations -- 8.3 Numerical Solutions of First-Order Ordinary Differential Equations -- 8.4 Fick's Law of Diffusion-A Widely Used Partial Differential Equation -- Part IV Probability Density Functions and Error Analysis -- 9 Probability Density Functions and Their Use in Geology -- 9.1 Probability Distribution and Density Functions -- 9.2 The Normal Distribution -- 9.3 The Log-Normal Distribution -- 9.4 Other Useful PDFs for Geological Applications -- 9.5 Density Estimation -- 9.6 The Central Limit Theorem and Normal Distributed Means -- 10 Error Analysis -- 10.1 Dealing with Errors in Geological Measurements -- 10.2 Reporting Uncertainties in Binary Diagrams -- 10.3 Linearized Approach to Error Propagation -- 10.4 The Mote Carlo Approach to Error Propagation -- Part V Robust Statistics and Machine Learning -- 11 Introduction to Robust Statistics -- 11.1 Classical and Robust Approaches to Statistics -- 11.2 Normality Tests -- 11.3 Robust Estimators for Location and Scale -- 11.4 Robust Statistics in Geochemistry -- 12 Machine Learning -- 12.1 Introduction to Machine Learning in Geology -- 12.2 Machine Learning in Python -- 12.3 A Case Study of Machine Learning in Geology -- Appendix A Python Packages and Resources for Geologists -- A.1 Python Libraries for Geologists -- A.2 Python Learning Resources for Geologists -- Appendix B Introduction to Object Oriented Programming -- B.1 Object-Oriented Programming -- B.2 Defining Classes, Attributes, and Methods in Python.
Appendix C The Matplotlib Object Oriented API -- C.1 Matplotlib Application Programming Interfaces -- C.2 Matplotlib Object Oriented API -- C.3 Fine Tuning Geological Diagrams Using the OO-Style -- Appendix D Working with Pandas -- D.1 How to Perform Common Operations in Pandas -- Appendix Further Readings.
Record Nr. UNINA-9910502625203321
Petrelli Maurizio  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning for Earth Sciences : Using Python to Solve Geological Problems / / by Maurizio Petrelli
Machine Learning for Earth Sciences : Using Python to Solve Geological Problems / / by Maurizio Petrelli
Autore Petrelli Maurizio
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (xvi, 209 pages) : illustrations
Disciplina 550.028557
Collana Springer Textbooks in Earth Sciences, Geography and Environment
Soggetto topico Earth sciences
Machine learning
Artificial intelligence
Mathematics
Application software
Earth Sciences
Machine Learning
Artificial Intelligence
Applications of Mathematics
Computer and Information Systems Applications
ISBN 3-031-35114-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part 1: Basic Concepts of Machine Learning for Earth Scientists -- Chapter 1. Introduction to Machine Learning -- Chapter 2. Setting Up your Python Environments for Machine Learning -- Chapter 3. Machine Learning Workflow -- Part 2: Unsupervised Learning -- Chapter 4. Unsupervised Machine Learning Methods -- Chapter 5. Clustering and Dimensionality Reduction in Petrology -- Chapter 6. Clustering of Multi-Spectral Data -- Part 3: Supervised Learning -- Chapter 7. Supervised Machine Learning Methods -- Chapter 8. Classification of Well Log Data Facies by Machine Learning -- Chapter 9. Machine Learning Regression in Petrology -- Part 4: Scaling Machine Learning Models -- Chapter 10. Parallel Computing and Scaling with Dask -- Chapter 11. Scale Your Models in the Cloud -- Part 5: Next Step: Deep Learning -- Chapter 12. Introduction to Deep Learning.
Record Nr. UNINA-9910746284003321
Petrelli Maurizio  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui