Matrix spaces and Schur multipliers : matriceal harmonic analysis / / by Lars-Erik Persson (Luleå University of Technology, Sweden & Narvik University College, Norway) & Nicolae Popa ("Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze", Romania)
| Matrix spaces and Schur multipliers : matriceal harmonic analysis / / by Lars-Erik Persson (Luleå University of Technology, Sweden & Narvik University College, Norway) & Nicolae Popa ("Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze", Romania) |
| Autore | Persson Lars-Erik <1944-> |
| Pubbl/distr/stampa | [Hackensack] New Jersey : , : World Scientific, , [2014] |
| Descrizione fisica | 1 online resource (207 p.) |
| Disciplina | 512.9/434 |
| Altri autori (Persone) | PopaNicolae |
| Soggetto topico |
Matrices
Algebraic spaces Schur multiplier |
| Soggetto genere / forma | Electronic books. |
| ISBN | 981-4546-78-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Contents; 1. Introduction; 1.1 Preliminary notions and notations; 1.1.1 Infinite matrices; 1.1.2 Analytic functions on disk; 1.1.3 Miscellaneous; 1.1.4 The Bergman metric; Notes; 2. Integral operators in infinite matrix theory; 2.1 Periodical integral operators; 2.2 Nonperiodical integral operators; 2.3 Some applications of integral operators in the classical theory of infinite matrices; 2.3.1 The characterization of Toeplitz matrices; 2.3.2 The characterization of Hankel matrices; 2.3.3 The main triangle projection; 2.3.4 B( 2) is a Banach algebra under the Schur product; Notes
3. Matrix versions of spaces of periodical functions3.1 Preliminaries; 3.2 Some properties of the space C( 2); 3.3 Another characterization of the space C( 2) and related results; 3.4 A matrix version for functions of bounded variation; 3.5 Approximation of infinite matrices by matriceal Haar polynomials; 3.5.1 Introduction; 3.5.2 About the space ms; 3.5.3 Extension of Haar's theorem; 3.6 Lipschitz spaces of matrices; a characterization; Notes; 4. Matrix versions of Hardy spaces; 4.1 First properties of matriceal Hardy space; 4.2 Hardy-Schatten spaces 6.2 Some inequalities in Bergman-Schatten classes6.3 A characterization of the Bergman-Schatten space; 6.4 Usual multipliers in Bergman-Schatten spaces; Notes; 7. A matrix version of Bloch spaces; 7.1 Elementary properties of Bloch matrices; 7.2 Matrix version of little Bloch space; Notes; 8. Schur multipliers on analytic matrix spaces; Notes; Bibliography; Index |
| Record Nr. | UNINA-9910453611803321 |
Persson Lars-Erik <1944->
|
||
| [Hackensack] New Jersey : , : World Scientific, , [2014] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Matrix spaces and Schur multipliers : matriceal harmonic analysis / / Lars-Erik Persson, Lulea University of Technology, Sweden & Narvik University College, Norway, Nicolae Popa, "Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze," Romania
| Matrix spaces and Schur multipliers : matriceal harmonic analysis / / Lars-Erik Persson, Lulea University of Technology, Sweden & Narvik University College, Norway, Nicolae Popa, "Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze," Romania |
| Autore | Persson Lars-Erik <1944-> |
| Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2014] |
| Descrizione fisica | 1 online resource (xiv, 192 pages) : illustrations |
| Disciplina | 512.9/434 |
| Collana | Gale eBooks |
| Soggetto topico |
Matrices
Algebraic spaces Schur multiplier |
| ISBN | 981-4546-78-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Contents; 1. Introduction; 1.1 Preliminary notions and notations; 1.1.1 Infinite matrices; 1.1.2 Analytic functions on disk; 1.1.3 Miscellaneous; 1.1.4 The Bergman metric; Notes; 2. Integral operators in infinite matrix theory; 2.1 Periodical integral operators; 2.2 Nonperiodical integral operators; 2.3 Some applications of integral operators in the classical theory of infinite matrices; 2.3.1 The characterization of Toeplitz matrices; 2.3.2 The characterization of Hankel matrices; 2.3.3 The main triangle projection; 2.3.4 B( 2) is a Banach algebra under the Schur product; Notes
3. Matrix versions of spaces of periodical functions3.1 Preliminaries; 3.2 Some properties of the space C( 2); 3.3 Another characterization of the space C( 2) and related results; 3.4 A matrix version for functions of bounded variation; 3.5 Approximation of infinite matrices by matriceal Haar polynomials; 3.5.1 Introduction; 3.5.2 About the space ms; 3.5.3 Extension of Haar's theorem; 3.6 Lipschitz spaces of matrices; a characterization; Notes; 4. Matrix versions of Hardy spaces; 4.1 First properties of matriceal Hardy space; 4.2 Hardy-Schatten spaces 6.2 Some inequalities in Bergman-Schatten classes6.3 A characterization of the Bergman-Schatten space; 6.4 Usual multipliers in Bergman-Schatten spaces; Notes; 7. A matrix version of Bloch spaces; 7.1 Elementary properties of Bloch matrices; 7.2 Matrix version of little Bloch space; Notes; 8. Schur multipliers on analytic matrix spaces; Notes; Bibliography; Index |
| Record Nr. | UNINA-9910790974203321 |
Persson Lars-Erik <1944->
|
||
| New Jersey : , : World Scientific, , [2014] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Matrix spaces and Schur multipliers : matriceal harmonic analysis / / Lars-Erik Persson, Lulea University of Technology, Sweden & Narvik University College, Norway, Nicolae Popa, "Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze," Romania
| Matrix spaces and Schur multipliers : matriceal harmonic analysis / / Lars-Erik Persson, Lulea University of Technology, Sweden & Narvik University College, Norway, Nicolae Popa, "Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze," Romania |
| Autore | Persson Lars-Erik <1944-> |
| Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2014] |
| Descrizione fisica | 1 online resource (xiv, 192 pages) : illustrations |
| Disciplina | 512.9/434 |
| Collana | Gale eBooks |
| Soggetto topico |
Matrices
Algebraic spaces Schur multiplier |
| ISBN | 981-4546-78-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Contents; 1. Introduction; 1.1 Preliminary notions and notations; 1.1.1 Infinite matrices; 1.1.2 Analytic functions on disk; 1.1.3 Miscellaneous; 1.1.4 The Bergman metric; Notes; 2. Integral operators in infinite matrix theory; 2.1 Periodical integral operators; 2.2 Nonperiodical integral operators; 2.3 Some applications of integral operators in the classical theory of infinite matrices; 2.3.1 The characterization of Toeplitz matrices; 2.3.2 The characterization of Hankel matrices; 2.3.3 The main triangle projection; 2.3.4 B( 2) is a Banach algebra under the Schur product; Notes
3. Matrix versions of spaces of periodical functions3.1 Preliminaries; 3.2 Some properties of the space C( 2); 3.3 Another characterization of the space C( 2) and related results; 3.4 A matrix version for functions of bounded variation; 3.5 Approximation of infinite matrices by matriceal Haar polynomials; 3.5.1 Introduction; 3.5.2 About the space ms; 3.5.3 Extension of Haar's theorem; 3.6 Lipschitz spaces of matrices; a characterization; Notes; 4. Matrix versions of Hardy spaces; 4.1 First properties of matriceal Hardy space; 4.2 Hardy-Schatten spaces 6.2 Some inequalities in Bergman-Schatten classes6.3 A characterization of the Bergman-Schatten space; 6.4 Usual multipliers in Bergman-Schatten spaces; Notes; 7. A matrix version of Bloch spaces; 7.1 Elementary properties of Bloch matrices; 7.2 Matrix version of little Bloch space; Notes; 8. Schur multipliers on analytic matrix spaces; Notes; Bibliography; Index |
| Record Nr. | UNINA-9910820633403321 |
Persson Lars-Erik <1944->
|
||
| New Jersey : , : World Scientific, , [2014] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||