top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD) / / Kuan-Chuan Peng, Ziyan Wu
AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD) / / Kuan-Chuan Peng, Ziyan Wu
Autore Peng Kuan-Chuan
Pubbl/distr/stampa Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2022
Descrizione fisica 1 electronic resource (186 p.)
Disciplina 006.3
Soggetto topico Technology: general issues
Artificial intelligence
History of engineering & technology
Soggetto non controllato permutation equivariance
optimization
gender bias
fairness
face-recognition models
facial attributes
social bias
bias detection
natural language processing
temporal bias
forecasting
contrastive learning
supervised contrastive learning
transfer learning
robustness
noisy labels
coresets
deep learning
contextualized embeddings
out-of-distribution generalization
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Editors -- Statement of Peer Review -- Electricity Consumption Forecasting for Out-of-Distribution Time-of-Use Tariffs -- Measuring Embedded Human-Like Biases in Face Recognition Models -- Measuring Gender Bias in Contextualized Embeddings -- The Details Matter: Preventing Class Collapsein Supervised Contrastive Learning -- DAP-SDD: Distribution-Aware Pseudo Labeling for Small Defect Detection -- Quantifying Bias in a Face -- Verification System -- Super-Resolution for Brain MR Images from a Significantly Small Amount of Training Data -- Dual Complementary Prototype Learning for Few-Shot Segmentation -- Extracting Salient Facts from Company Reviews with Scarce Labels -- Long-Tail Zero and Few-Shot Learning via Contrastive Pretraining on and for Small Data -- Age Should Not Matter: -- Towards More Accurate Pedestrian Detection via Self-Training.
Altri titoli varianti AAAI Workshop on Artificial Intelligence with Biased or Scarce Data
Record Nr. UNINA-9910585937403321
Peng Kuan-Chuan  
Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Human Activity Recognition and Anomaly Detection : 4th International Workshop, DL-HAR 2024, and First International Workshop, ADFM 2024, Held in Conjunction with IJCAI 2024, Jeju, South Korea, August 3–9, 2024, Revised Selected Papers / / edited by Kuan-Chuan Peng, Yizhou Wang, Ziyue Li, Zhenghua Chen, Jianfei Yang, Sungho Suh, Min Wu
Human Activity Recognition and Anomaly Detection : 4th International Workshop, DL-HAR 2024, and First International Workshop, ADFM 2024, Held in Conjunction with IJCAI 2024, Jeju, South Korea, August 3–9, 2024, Revised Selected Papers / / edited by Kuan-Chuan Peng, Yizhou Wang, Ziyue Li, Zhenghua Chen, Jianfei Yang, Sungho Suh, Min Wu
Autore Peng Kuan-Chuan
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (156 pages)
Disciplina 006.3
Altri autori (Persone) WangYizhou
LiZiyue
ChenZhenghua
YangJianfei
SuhSungho
WuMin
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Compilers (Computer programs)
Computer simulation
Artificial Intelligence
Compilers and Interpreters
Computer Modelling
ISBN 9789819790036
9789819790029
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Anomaly Detection with Foundation Models. -- GPT-4V-AD: Exploring Grounding Potential of VQA-oriented GPT-4V for Zero-shot Anomaly Detection. -- CLIP-AD: A Language-Guided Staged Dual-Path Model for Zero-shot Anomaly Detection. -- DDPM-MoCo: Advancing Industrial Surface Defect Generation and Detection with Generative and Contrastive Learning. -- Dual Memory-guided Probabilistic Model for Weakly-supervised Anomaly Detection. -- Deep Learning for Human Activity Recognition. -- Real-Time Human Action Prediction via Pose Kinematics. -- Uncertainty Awareness for Unsupervised Domain Adaptation on Human Activity Recognition. -- Deep Interaction Feature Fusion for Robust Human Activity Recognition. -- How effective are Self-Supervised models for Contact Identification in Videos. -- A Wearable Multi-Modal Edge-Computing System for Real-Time Kitchen Activity Recognition.
Record Nr. UNINA-9910983029903321
Peng Kuan-Chuan  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui