Symplectic actions of 2-tori on 4-manifolds / / Alvaro Pelayo
| Symplectic actions of 2-tori on 4-manifolds / / Alvaro Pelayo |
| Autore | Pelayo Alvaro <1978-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
| Descrizione fisica | 1 online resource (81 p.) |
| Disciplina | 516.3/62 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Symplectic manifolds
Low-dimensional topology Torus (Geometry) |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0573-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Acknowledgements""; ""Chapter 1. Introduction""; ""Chapter 2. The orbit space""; ""2.1. Symplectic form on the T-orbits""; ""2.2. Stabilizer subgroup classification""; ""2.3. Orbifold structure of M/T""; ""2.4. A flat connection for the projection M M/T""; ""2.5. Symplectic tube theorem""; ""Chapter 3. Global model""; ""3.1. Orbifold coverings of M/T""; ""3.2. Symplectic structure on M/T""; ""3.3. Model of (M, ): Definition""; ""3.4. Model of (M,): Proof""; ""Chapter 4. Global model up to equivariant diffeomorphisms""; ""4.1. Generalization of Kahn's theorem""
""4.2. Smooth equivariant splittings""""4.3. Alternative model""; ""Chapter 5. Classification: Free case""; ""5.1. Monodromy invariant""; ""5.2. Uniqueness""; ""5.3. Existence""; ""5.4. Classification theorem""; ""Chapter 6. Orbifold homology and geometric mappings""; ""6.1. Geometric torsion in homology of orbifolds""; ""6.2. Geometric isomorphisms""; ""6.3. Symplectic and torsion geometric maps""; ""6.4. Geometric isomorphisms: Characterization""; ""Chapter 7. Classification""; ""7.1. Monodromy invariant""; ""7.2. Uniqueness""; ""7.3. Existence""; ""7.4. Classification theorem"" ""Chapter 8. The four-dimensional classification""""8.1. Two families of examples""; ""8.2. Classification statement""; ""8.3. Proof of Theorem 8.2.1""; ""8.4. Corollaries of Theorem 8.2.1""; ""Chapter 9. Appendix: (sometimes symplectic) orbifolds""; ""9.1. Bundles, connections""; ""9.2. Coverings""; ""9.3. Differential and symplectic forms""; ""9.4. Orbifold homology, Hurewicz map""; ""9.5. Classification of orbisurfaces""; ""Bibliography"" |
| Record Nr. | UNINA-9910480647403321 |
Pelayo Alvaro <1978->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Symplectic actions of 2-tori on 4-manifolds / / Alvaro Pelayo
| Symplectic actions of 2-tori on 4-manifolds / / Alvaro Pelayo |
| Autore | Pelayo Alvaro <1978-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
| Descrizione fisica | 1 online resource (81 p.) |
| Disciplina | 516.3/62 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Symplectic manifolds
Low-dimensional topology Torus (Geometry) |
| ISBN | 1-4704-0573-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Acknowledgements""; ""Chapter 1. Introduction""; ""Chapter 2. The orbit space""; ""2.1. Symplectic form on the T-orbits""; ""2.2. Stabilizer subgroup classification""; ""2.3. Orbifold structure of M/T""; ""2.4. A flat connection for the projection M M/T""; ""2.5. Symplectic tube theorem""; ""Chapter 3. Global model""; ""3.1. Orbifold coverings of M/T""; ""3.2. Symplectic structure on M/T""; ""3.3. Model of (M, ): Definition""; ""3.4. Model of (M,): Proof""; ""Chapter 4. Global model up to equivariant diffeomorphisms""; ""4.1. Generalization of Kahn's theorem""
""4.2. Smooth equivariant splittings""""4.3. Alternative model""; ""Chapter 5. Classification: Free case""; ""5.1. Monodromy invariant""; ""5.2. Uniqueness""; ""5.3. Existence""; ""5.4. Classification theorem""; ""Chapter 6. Orbifold homology and geometric mappings""; ""6.1. Geometric torsion in homology of orbifolds""; ""6.2. Geometric isomorphisms""; ""6.3. Symplectic and torsion geometric maps""; ""6.4. Geometric isomorphisms: Characterization""; ""Chapter 7. Classification""; ""7.1. Monodromy invariant""; ""7.2. Uniqueness""; ""7.3. Existence""; ""7.4. Classification theorem"" ""Chapter 8. The four-dimensional classification""""8.1. Two families of examples""; ""8.2. Classification statement""; ""8.3. Proof of Theorem 8.2.1""; ""8.4. Corollaries of Theorem 8.2.1""; ""Chapter 9. Appendix: (sometimes symplectic) orbifolds""; ""9.1. Bundles, connections""; ""9.2. Coverings""; ""9.3. Differential and symplectic forms""; ""9.4. Orbifold homology, Hurewicz map""; ""9.5. Classification of orbisurfaces""; ""Bibliography"" |
| Record Nr. | UNINA-9910788857403321 |
Pelayo Alvaro <1978->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Symplectic actions of 2-tori on 4-manifolds / / Alvaro Pelayo
| Symplectic actions of 2-tori on 4-manifolds / / Alvaro Pelayo |
| Autore | Pelayo Alvaro <1978-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
| Descrizione fisica | 1 online resource (81 p.) |
| Disciplina | 516.3/62 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Symplectic manifolds
Low-dimensional topology Torus (Geometry) |
| ISBN | 1-4704-0573-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Acknowledgements""; ""Chapter 1. Introduction""; ""Chapter 2. The orbit space""; ""2.1. Symplectic form on the T-orbits""; ""2.2. Stabilizer subgroup classification""; ""2.3. Orbifold structure of M/T""; ""2.4. A flat connection for the projection M M/T""; ""2.5. Symplectic tube theorem""; ""Chapter 3. Global model""; ""3.1. Orbifold coverings of M/T""; ""3.2. Symplectic structure on M/T""; ""3.3. Model of (M, ): Definition""; ""3.4. Model of (M,): Proof""; ""Chapter 4. Global model up to equivariant diffeomorphisms""; ""4.1. Generalization of Kahn's theorem""
""4.2. Smooth equivariant splittings""""4.3. Alternative model""; ""Chapter 5. Classification: Free case""; ""5.1. Monodromy invariant""; ""5.2. Uniqueness""; ""5.3. Existence""; ""5.4. Classification theorem""; ""Chapter 6. Orbifold homology and geometric mappings""; ""6.1. Geometric torsion in homology of orbifolds""; ""6.2. Geometric isomorphisms""; ""6.3. Symplectic and torsion geometric maps""; ""6.4. Geometric isomorphisms: Characterization""; ""Chapter 7. Classification""; ""7.1. Monodromy invariant""; ""7.2. Uniqueness""; ""7.3. Existence""; ""7.4. Classification theorem"" ""Chapter 8. The four-dimensional classification""""8.1. Two families of examples""; ""8.2. Classification statement""; ""8.3. Proof of Theorem 8.2.1""; ""8.4. Corollaries of Theorem 8.2.1""; ""Chapter 9. Appendix: (sometimes symplectic) orbifolds""; ""9.1. Bundles, connections""; ""9.2. Coverings""; ""9.3. Differential and symplectic forms""; ""9.4. Orbifold homology, Hurewicz map""; ""9.5. Classification of orbisurfaces""; ""Bibliography"" |
| Record Nr. | UNINA-9910827899303321 |
Pelayo Alvaro <1978->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||