Imaps 2018 / / guest editor Agata Skwarek |
Autore | Pecht Michael |
Pubbl/distr/stampa | [Place of publication not identified] : , : Emerald Publishing, , 2019 |
Descrizione fisica | 1 online resource (53 pages) |
Disciplina | 621.381 |
Collana | Circuit World |
Soggetto topico |
Microelectronics
Chip |
ISBN | 1-83867-668-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910793772403321 |
Pecht Michael | ||
[Place of publication not identified] : , : Emerald Publishing, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Imaps 2018 / / guest editor Agata Skwarek |
Autore | Pecht Michael |
Pubbl/distr/stampa | [Place of publication not identified] : , : Emerald Publishing, , 2019 |
Descrizione fisica | 1 online resource (53 pages) |
Disciplina | 621.381 |
Collana | Circuit World |
Soggetto topico |
Microelectronics
Chip |
ISBN | 1-83867-668-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910823996303321 |
Pecht Michael | ||
[Place of publication not identified] : , : Emerald Publishing, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Prognostics and health management of electronics [[electronic resource] /] / Michael G. Pecht |
Autore | Pecht Michael |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2008 |
Descrizione fisica | 1 online resource (335 p.) |
Disciplina |
621.381
621.381028/8 |
Soggetto topico | Electronic systems - Maintenance and repair |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-81459-8
9786611814595 0-470-38584-7 0-470-38583-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Prognostics and Health Management of Electronics; Contents; Preface; Acknowledgements; Acronyms; Chapter 1 Introduction; 1.1 Reliability and Prognostics; 1.2 PHM for Electronics; 1.3 PHM Concepts and Methods; 1.3.1 Fuses and Canaries; 1.3.2 Monitoring and Reasoning of Failure Precursors; 1.3.3 Monitoring Environmental and Usage Profiles for Damage Modeling; 1.4 Implementation of PHM for System of Systems; 1.5 Summary; Chapter 2 Sensor Systems for PHM; 2.1 Sensor and Sensing Principles; 2.1.1 Thermal Sensors; 2.1.2 Electrical Sensors; 2.1.3 Mechanical Sensors; 2.1.4 Humidity Sensors
2.1.5 Biosensors2.1.6 Chemical Sensors; 2.1.7 Optical Sensors; 2.1.8 Magnetic Sensors; 2.2 Sensor Systems for PHM; 2.2.1 Parameters to Be Monitored; 2.2.2 Sensor System Performance; 2.2.3 Physical Attributes of Sensor Systems; 2.2.4 Functional Attributes of Sensor Systems; 2.2.5 Cost; 2.2.6 Reliability; 2.2.7 Availability; 2.3 Sensor Selection; 2.4 Examples of Sensor Systems for PHM Implementation; 2.5 Emerging Trends in Sensor Technology for PHM; Chapter 3 Data-Driven Approaches for PHM; 3.1 Introduction; 3.2 Parametric Statistical Methods; 3.2.1 Likelihood Ratio Test 3.2.2 Maximum Likelihood Estimation3.2.3 Neyman-Pearson Criterion; 3.2.4 Expectation Maximization; 3.2.5 Minimum Mean Square Error Estimation; 3.2.6 Maximum A Posteriori Estimation; 3.2.7 Rao-Blackwell Estimation; 3.2.8 Cramer-Rao Lower Bound; 3.3 Nonparametric Statistical Methods; 3.3.1 Nearest Neighbor-Based Classification; 3.3.2 Parzen Window (or Kernel Density Estimation); 3.3.3 Wilcoxon Rank-Sum Test; 3.3.4 Kolmogorov-Smirnov Test; 3.3.5 Chi Square Test; 3.4 Machine Learning Techniques; 3.5 Supervised Classification; 3.5.1 Discriminative Approach; 3.5.2 Generative Approach 3.6 Unsupervised Classification3.6.1 Discriminative Approach; 3.6.2 Generative Approach; 3.7 Summary; Chapter 4 Physics-of-Failure Approach to PHM; 4.1 PoF-Based PHM Methodology; 4.2 Hardware Configuration; 4.3 Loads; 4.4 Failure Modes, Mechanisms, and Effects Analysis; 4.5 Stress Analysis; 4.6 Reliability Assessment and Remaining-Life Predictions; 4.7 Outputs from PoF-Based PHM; Chapter 5 The Economics of PHM; 5.1 Return on Investment; 5.1.1 PHM ROI Analyses; 5.1.2 Financial Costs; 5.2 PHM Cost-Modeling Terminology and Definitions; 5.3 PHM Implementation Costs; 5.3.1 Nonrecurring Costs 5.3.2 Recurring Costs5.3.3 Infrastructure Costs; 5.3.4 Nonmonetary Considerations and Maintenance Culture; 5.4 Cost Avoidance; 5.4.1 Maintenance Planning Cost Avoidance; 5.4.2 Discrete Event Simulation Maintenance Planning Model; 5.4.3 Fixed-Schedule Maintenance Interval; 5.4.4 Precursor to Failure Monitoring; 5.4.5 LRU-Independent Methods; 5.4.6 Discrete Event Simulation Implementation Details; 5.4.7 Operational Profile; 5.5 Example PHM Cost Analysis; 5.5.1 Single-Socket Model Results; 5.5.2 Multiple-Socket Model Results; 5.5.3 Example Business Case Construction; 5.6 Summary Chapter 6 PHM Roadmap: Challenges and Opportunities |
Record Nr. | UNINA-9910144128903321 |
Pecht Michael | ||
Hoboken, N.J., : Wiley, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Prognostics and health management of electronics [[electronic resource] /] / Michael G. Pecht |
Autore | Pecht Michael |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2008 |
Descrizione fisica | 1 online resource (335 p.) |
Disciplina |
621.381
621.381028/8 |
Soggetto topico | Electronic systems - Maintenance and repair |
ISBN |
1-281-81459-8
9786611814595 0-470-38584-7 0-470-38583-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Prognostics and Health Management of Electronics; Contents; Preface; Acknowledgements; Acronyms; Chapter 1 Introduction; 1.1 Reliability and Prognostics; 1.2 PHM for Electronics; 1.3 PHM Concepts and Methods; 1.3.1 Fuses and Canaries; 1.3.2 Monitoring and Reasoning of Failure Precursors; 1.3.3 Monitoring Environmental and Usage Profiles for Damage Modeling; 1.4 Implementation of PHM for System of Systems; 1.5 Summary; Chapter 2 Sensor Systems for PHM; 2.1 Sensor and Sensing Principles; 2.1.1 Thermal Sensors; 2.1.2 Electrical Sensors; 2.1.3 Mechanical Sensors; 2.1.4 Humidity Sensors
2.1.5 Biosensors2.1.6 Chemical Sensors; 2.1.7 Optical Sensors; 2.1.8 Magnetic Sensors; 2.2 Sensor Systems for PHM; 2.2.1 Parameters to Be Monitored; 2.2.2 Sensor System Performance; 2.2.3 Physical Attributes of Sensor Systems; 2.2.4 Functional Attributes of Sensor Systems; 2.2.5 Cost; 2.2.6 Reliability; 2.2.7 Availability; 2.3 Sensor Selection; 2.4 Examples of Sensor Systems for PHM Implementation; 2.5 Emerging Trends in Sensor Technology for PHM; Chapter 3 Data-Driven Approaches for PHM; 3.1 Introduction; 3.2 Parametric Statistical Methods; 3.2.1 Likelihood Ratio Test 3.2.2 Maximum Likelihood Estimation3.2.3 Neyman-Pearson Criterion; 3.2.4 Expectation Maximization; 3.2.5 Minimum Mean Square Error Estimation; 3.2.6 Maximum A Posteriori Estimation; 3.2.7 Rao-Blackwell Estimation; 3.2.8 Cramer-Rao Lower Bound; 3.3 Nonparametric Statistical Methods; 3.3.1 Nearest Neighbor-Based Classification; 3.3.2 Parzen Window (or Kernel Density Estimation); 3.3.3 Wilcoxon Rank-Sum Test; 3.3.4 Kolmogorov-Smirnov Test; 3.3.5 Chi Square Test; 3.4 Machine Learning Techniques; 3.5 Supervised Classification; 3.5.1 Discriminative Approach; 3.5.2 Generative Approach 3.6 Unsupervised Classification3.6.1 Discriminative Approach; 3.6.2 Generative Approach; 3.7 Summary; Chapter 4 Physics-of-Failure Approach to PHM; 4.1 PoF-Based PHM Methodology; 4.2 Hardware Configuration; 4.3 Loads; 4.4 Failure Modes, Mechanisms, and Effects Analysis; 4.5 Stress Analysis; 4.6 Reliability Assessment and Remaining-Life Predictions; 4.7 Outputs from PoF-Based PHM; Chapter 5 The Economics of PHM; 5.1 Return on Investment; 5.1.1 PHM ROI Analyses; 5.1.2 Financial Costs; 5.2 PHM Cost-Modeling Terminology and Definitions; 5.3 PHM Implementation Costs; 5.3.1 Nonrecurring Costs 5.3.2 Recurring Costs5.3.3 Infrastructure Costs; 5.3.4 Nonmonetary Considerations and Maintenance Culture; 5.4 Cost Avoidance; 5.4.1 Maintenance Planning Cost Avoidance; 5.4.2 Discrete Event Simulation Maintenance Planning Model; 5.4.3 Fixed-Schedule Maintenance Interval; 5.4.4 Precursor to Failure Monitoring; 5.4.5 LRU-Independent Methods; 5.4.6 Discrete Event Simulation Implementation Details; 5.4.7 Operational Profile; 5.5 Example PHM Cost Analysis; 5.5.1 Single-Socket Model Results; 5.5.2 Multiple-Socket Model Results; 5.5.3 Example Business Case Construction; 5.6 Summary Chapter 6 PHM Roadmap: Challenges and Opportunities |
Record Nr. | UNINA-9910830237203321 |
Pecht Michael | ||
Hoboken, N.J., : Wiley, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Prognostics and health management of electronics [[electronic resource] /] / Michael G. Pecht |
Autore | Pecht Michael |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2008 |
Descrizione fisica | 1 online resource (335 p.) |
Disciplina |
621.381
621.381028/8 |
Soggetto topico | Electronic systems - Maintenance and repair |
ISBN |
1-281-81459-8
9786611814595 0-470-38584-7 0-470-38583-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Prognostics and Health Management of Electronics; Contents; Preface; Acknowledgements; Acronyms; Chapter 1 Introduction; 1.1 Reliability and Prognostics; 1.2 PHM for Electronics; 1.3 PHM Concepts and Methods; 1.3.1 Fuses and Canaries; 1.3.2 Monitoring and Reasoning of Failure Precursors; 1.3.3 Monitoring Environmental and Usage Profiles for Damage Modeling; 1.4 Implementation of PHM for System of Systems; 1.5 Summary; Chapter 2 Sensor Systems for PHM; 2.1 Sensor and Sensing Principles; 2.1.1 Thermal Sensors; 2.1.2 Electrical Sensors; 2.1.3 Mechanical Sensors; 2.1.4 Humidity Sensors
2.1.5 Biosensors2.1.6 Chemical Sensors; 2.1.7 Optical Sensors; 2.1.8 Magnetic Sensors; 2.2 Sensor Systems for PHM; 2.2.1 Parameters to Be Monitored; 2.2.2 Sensor System Performance; 2.2.3 Physical Attributes of Sensor Systems; 2.2.4 Functional Attributes of Sensor Systems; 2.2.5 Cost; 2.2.6 Reliability; 2.2.7 Availability; 2.3 Sensor Selection; 2.4 Examples of Sensor Systems for PHM Implementation; 2.5 Emerging Trends in Sensor Technology for PHM; Chapter 3 Data-Driven Approaches for PHM; 3.1 Introduction; 3.2 Parametric Statistical Methods; 3.2.1 Likelihood Ratio Test 3.2.2 Maximum Likelihood Estimation3.2.3 Neyman-Pearson Criterion; 3.2.4 Expectation Maximization; 3.2.5 Minimum Mean Square Error Estimation; 3.2.6 Maximum A Posteriori Estimation; 3.2.7 Rao-Blackwell Estimation; 3.2.8 Cramer-Rao Lower Bound; 3.3 Nonparametric Statistical Methods; 3.3.1 Nearest Neighbor-Based Classification; 3.3.2 Parzen Window (or Kernel Density Estimation); 3.3.3 Wilcoxon Rank-Sum Test; 3.3.4 Kolmogorov-Smirnov Test; 3.3.5 Chi Square Test; 3.4 Machine Learning Techniques; 3.5 Supervised Classification; 3.5.1 Discriminative Approach; 3.5.2 Generative Approach 3.6 Unsupervised Classification3.6.1 Discriminative Approach; 3.6.2 Generative Approach; 3.7 Summary; Chapter 4 Physics-of-Failure Approach to PHM; 4.1 PoF-Based PHM Methodology; 4.2 Hardware Configuration; 4.3 Loads; 4.4 Failure Modes, Mechanisms, and Effects Analysis; 4.5 Stress Analysis; 4.6 Reliability Assessment and Remaining-Life Predictions; 4.7 Outputs from PoF-Based PHM; Chapter 5 The Economics of PHM; 5.1 Return on Investment; 5.1.1 PHM ROI Analyses; 5.1.2 Financial Costs; 5.2 PHM Cost-Modeling Terminology and Definitions; 5.3 PHM Implementation Costs; 5.3.1 Nonrecurring Costs 5.3.2 Recurring Costs5.3.3 Infrastructure Costs; 5.3.4 Nonmonetary Considerations and Maintenance Culture; 5.4 Cost Avoidance; 5.4.1 Maintenance Planning Cost Avoidance; 5.4.2 Discrete Event Simulation Maintenance Planning Model; 5.4.3 Fixed-Schedule Maintenance Interval; 5.4.4 Precursor to Failure Monitoring; 5.4.5 LRU-Independent Methods; 5.4.6 Discrete Event Simulation Implementation Details; 5.4.7 Operational Profile; 5.5 Example PHM Cost Analysis; 5.5.1 Single-Socket Model Results; 5.5.2 Multiple-Socket Model Results; 5.5.3 Example Business Case Construction; 5.6 Summary Chapter 6 PHM Roadmap: Challenges and Opportunities |
Record Nr. | UNINA-9910877123103321 |
Pecht Michael | ||
Hoboken, N.J., : Wiley, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|