top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Causal inference in statistics : a primer / / Judea Pearl, Madelyn Glymour, Nicholas P. Jewell
Causal inference in statistics : a primer / / Judea Pearl, Madelyn Glymour, Nicholas P. Jewell
Autore Pearl Judea
Pubbl/distr/stampa West Sussex, England : , : Wiley, , 2016
Descrizione fisica 1 online resource (181 p.)
Disciplina 519.5/4
Soggetto topico Mathematical statistics
Causation
Probabilities
Soggetto genere / forma Electronic books.
ISBN 1-119-18686-2
1-119-18685-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preliminaries : statistical and causal models -- Graphical models and their applications -- The effects of interventions -- Counterfactuals and their applications.
Record Nr. UNINA-9910466121403321
Pearl Judea  
West Sussex, England : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Causal inference in statistics : a primer / / Judea Pearl, Madelyn Glymour, Nicholas P. Jewell
Causal inference in statistics : a primer / / Judea Pearl, Madelyn Glymour, Nicholas P. Jewell
Autore Pearl Judea
Pubbl/distr/stampa West Sussex, England : , : Wiley, , 2016
Descrizione fisica 1 online resource (181 pages) : illustrations, tables
Disciplina 519.5/4
Soggetto topico Causation
Mathematical statistics
Probabilities
ISBN 1-119-18686-2
1-119-18685-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910795961503321
Pearl Judea  
West Sussex, England : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Causal inference in statistics : a primer / / Judea Pearl, Madelyn Glymour, Nicholas P. Jewell
Causal inference in statistics : a primer / / Judea Pearl, Madelyn Glymour, Nicholas P. Jewell
Autore Pearl Judea
Pubbl/distr/stampa West Sussex, England : , : Wiley, , 2016
Descrizione fisica 1 online resource (181 pages) : illustrations, tables
Disciplina 519.5/4
Soggetto topico Causation
Mathematical statistics
Probabilities
ISBN 1-119-18686-2
1-119-18685-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910814675503321
Pearl Judea  
West Sussex, England : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Causality : models, reasoning, and inference / / Judea Pearl [[electronic resource]]
Causality : models, reasoning, and inference / / Judea Pearl [[electronic resource]]
Autore Pearl Judea
Edizione [2nd edition]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2013
Descrizione fisica 1 online resource (xvi, 384 pages) : digital, PDF file(s)
Disciplina 122
Soggetto topico Causation
Probabilities
ISBN 1-139-63780-0
1-316-08838-3
1-139-64936-1
0-511-80316-8
1-139-64172-7
1-139-63888-2
1-299-40923-7
1-139-64840-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; CAUSALITY: Models, Reasoning, and Inference Second Edition; Series Page; Title; Copyright; Dedication; Contents; Preface to the First Edition; Preface to the Second Edition; CHAPTER ONE Introduction to Probabilities, Graphs, and Causal Models; 1.1 INTRODUCTION TO PROBABILITY THEORY; 1.1.1 Why Probabilities?; 1.1.2 Basic Concepts in Probability Theory; 1.1.3 Combining Predictive and Diagnostic Supports; 1.1.4 Random Variables and Expectations; 1.1.5 Conditional Independence and Graphoids; 1.2 GRAPHS AND PROBABILITIES; 1.2.1 Graphical Notation and Terminology; 1.2.2 Bayesian Networks
1.2.3 The d-Separation Criterion 1.2.4 Inference with Bayesian Networks; 1.3 CAUSAL BAYESIAN NETWORKS; 1.3.1 Causal Networks as Oracles for Interventions; 1.3.2 Causal Relationships and Their Stability; 1.4 FUNCTIONAL CAUSAL MODELS; 1.4.1 Structural Equations; 1.4.2 Probabilistic Predictions in Causal Models; 1.4.3 Interventions and Causal Effects in Functional Models; 1.4.4 Counterfactuals in Functional Models; 1.5 CAUSAL VERSUS STATISTICAL TERMINOLOGY; Causal versus Statistical Concepts; Two Mental Barriers to Causal Analysis; CHAPTER TWO A Theory of Inferred Causation; Preface
2.1 INTRODUCTION - THE BASIC INTUITIONS 2.2 THE CAUSAL DISCOVERY FRAMEWORK; 2.3 MODEL PREFERENCE (OCCAM'S RAZOR); 2.4 STABLE DISTRIBUTIONS; 2.5 RECOVERING DAG STRUCTURES; 2.6 RECOVERING LATENT STRUCTURES; 2.7 LOCAL CRITERIA FOR INFERRING CAUSAL RELATIONS; 2.8 NONTEMPORAL CAUSATION AND STATISTICAL TIME; 2.9 CONCLUSIONS; 2.9.1 On Minimality, Markov, and Stability; Relation to the Bayesian Approach; Postscript for the Second Edition; CHAPTER THREE Causal Diagrams and the Identification of Causal Effects; Preface; 3.1 INTRODUCTION; 3.2 INTERVENTION IN MARKOVIAN MODELS
3.2.1 Graphs as Models of Interventions 3.2.2 Interventions as Variables; 3.2.3 Computing the Effect of Interventions; An Example: Dynamic Process Control; Summary; 3.2.4 Identification of Causal Quantities; 3.3 CONTROLLING CONFOUNDING BIAS; 3.3.1 The Back-Door Criterion; 3.3.2 The Front-Door Criterion; 3.3.3 Example: Smoking and the Genotype Theory; 3.4 A CALCULUS OF INTERVENTION; 3.4.1 Preliminary Notation; 3.4.2 Inference Rules; 3.4.3 Symbolic Derivation of Causal Effects: An Example; 3.4.4 Causal Inference by Surrogate Experiments; 3.5 GRAPHICAL TESTS OF IDENTIFIABILITY
3.5.1 Identifying Models 3.5.2 Nonidentifying Models; 3.6 DISCUSSION; 3.6.1 Qualifications and Extensions; 3.6.2 Diagrams as a Mathematical Language; 3.6.3 Translation from Graphs to Potential Outcomes; 3.6.4 Relations to Robins's G-Estimation; Personal Remarks and Acknowledgments; Postscript for the Second Edition; Complete identification results; Applications and Critics; Chapter Road Map to the Main Results; CHAPTER FOUR Actions, Plans, and Direct Effects; Preface; 4.1 INTRODUCTION; 4.1.1 Actions, Acts, and Probabilities; 4.1.2 Actions in Decision Analysis; 4.1.3 Actions and Counterfactuals
4.2 CONDITIONAL ACTIONS AND STOCHASTIC POLICIES
Record Nr. UNINA-9910807835303321
Pearl Judea  
Cambridge : , : Cambridge University Press, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Causality : models, reasoning, and inference / / Judea Pearl [[electronic resource]]
Causality : models, reasoning, and inference / / Judea Pearl [[electronic resource]]
Autore Pearl Judea
Edizione [2nd edition]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2000
Descrizione fisica 1 online resource (xvi, 384 pages) : digital, PDF file(s)
Disciplina 122
Soggetto topico Causation
Probabilities
ISBN 1-139-63780-0
1-316-08838-3
1-139-64936-1
0-511-80316-8
1-139-64172-7
1-139-63888-2
1-299-40923-7
1-139-64840-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; CAUSALITY: Models, Reasoning, and Inference Second Edition; Series Page; Title; Copyright; Dedication; Contents; Preface to the First Edition; Preface to the Second Edition; CHAPTER ONE Introduction to Probabilities, Graphs, and Causal Models; 1.1 INTRODUCTION TO PROBABILITY THEORY; 1.1.1 Why Probabilities?; 1.1.2 Basic Concepts in Probability Theory; 1.1.3 Combining Predictive and Diagnostic Supports; 1.1.4 Random Variables and Expectations; 1.1.5 Conditional Independence and Graphoids; 1.2 GRAPHS AND PROBABILITIES; 1.2.1 Graphical Notation and Terminology; 1.2.2 Bayesian Networks
1.2.3 The d-Separation Criterion 1.2.4 Inference with Bayesian Networks; 1.3 CAUSAL BAYESIAN NETWORKS; 1.3.1 Causal Networks as Oracles for Interventions; 1.3.2 Causal Relationships and Their Stability; 1.4 FUNCTIONAL CAUSAL MODELS; 1.4.1 Structural Equations; 1.4.2 Probabilistic Predictions in Causal Models; 1.4.3 Interventions and Causal Effects in Functional Models; 1.4.4 Counterfactuals in Functional Models; 1.5 CAUSAL VERSUS STATISTICAL TERMINOLOGY; Causal versus Statistical Concepts; Two Mental Barriers to Causal Analysis; CHAPTER TWO A Theory of Inferred Causation; Preface
2.1 INTRODUCTION - THE BASIC INTUITIONS 2.2 THE CAUSAL DISCOVERY FRAMEWORK; 2.3 MODEL PREFERENCE (OCCAM'S RAZOR); 2.4 STABLE DISTRIBUTIONS; 2.5 RECOVERING DAG STRUCTURES; 2.6 RECOVERING LATENT STRUCTURES; 2.7 LOCAL CRITERIA FOR INFERRING CAUSAL RELATIONS; 2.8 NONTEMPORAL CAUSATION AND STATISTICAL TIME; 2.9 CONCLUSIONS; 2.9.1 On Minimality, Markov, and Stability; Relation to the Bayesian Approach; Postscript for the Second Edition; CHAPTER THREE Causal Diagrams and the Identification of Causal Effects; Preface; 3.1 INTRODUCTION; 3.2 INTERVENTION IN MARKOVIAN MODELS
3.2.1 Graphs as Models of Interventions 3.2.2 Interventions as Variables; 3.2.3 Computing the Effect of Interventions; An Example: Dynamic Process Control; Summary; 3.2.4 Identification of Causal Quantities; 3.3 CONTROLLING CONFOUNDING BIAS; 3.3.1 The Back-Door Criterion; 3.3.2 The Front-Door Criterion; 3.3.3 Example: Smoking and the Genotype Theory; 3.4 A CALCULUS OF INTERVENTION; 3.4.1 Preliminary Notation; 3.4.2 Inference Rules; 3.4.3 Symbolic Derivation of Causal Effects: An Example; 3.4.4 Causal Inference by Surrogate Experiments; 3.5 GRAPHICAL TESTS OF IDENTIFIABILITY
3.5.1 Identifying Models 3.5.2 Nonidentifying Models; 3.6 DISCUSSION; 3.6.1 Qualifications and Extensions; 3.6.2 Diagrams as a Mathematical Language; 3.6.3 Translation from Graphs to Potential Outcomes; 3.6.4 Relations to Robins's G-Estimation; Personal Remarks and Acknowledgments; Postscript for the Second Edition; Complete identification results; Applications and Critics; Chapter Road Map to the Main Results; CHAPTER FOUR Actions, Plans, and Direct Effects; Preface; 4.1 INTRODUCTION; 4.1.1 Actions, Acts, and Probabilities; 4.1.2 Actions in Decision Analysis; 4.1.3 Actions and Counterfactuals
4.2 CONDITIONAL ACTIONS AND STOCHASTIC POLICIES
Record Nr. UNINA-9910452641603321
Pearl Judea  
Cambridge : , : Cambridge University Press, , 2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Causality : models, reasoning, and inference / / Judea Pearl [[electronic resource]]
Causality : models, reasoning, and inference / / Judea Pearl [[electronic resource]]
Autore Pearl Judea
Edizione [2nd edition]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2000
Descrizione fisica 1 online resource (xvi, 384 pages) : digital, PDF file(s)
Disciplina 122
Soggetto topico Causation
Probabilities
ISBN 1-139-63780-0
1-316-08838-3
1-139-64936-1
0-511-80316-8
1-139-64172-7
1-139-63888-2
1-299-40923-7
1-139-64840-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; CAUSALITY: Models, Reasoning, and Inference Second Edition; Series Page; Title; Copyright; Dedication; Contents; Preface to the First Edition; Preface to the Second Edition; CHAPTER ONE Introduction to Probabilities, Graphs, and Causal Models; 1.1 INTRODUCTION TO PROBABILITY THEORY; 1.1.1 Why Probabilities?; 1.1.2 Basic Concepts in Probability Theory; 1.1.3 Combining Predictive and Diagnostic Supports; 1.1.4 Random Variables and Expectations; 1.1.5 Conditional Independence and Graphoids; 1.2 GRAPHS AND PROBABILITIES; 1.2.1 Graphical Notation and Terminology; 1.2.2 Bayesian Networks
1.2.3 The d-Separation Criterion 1.2.4 Inference with Bayesian Networks; 1.3 CAUSAL BAYESIAN NETWORKS; 1.3.1 Causal Networks as Oracles for Interventions; 1.3.2 Causal Relationships and Their Stability; 1.4 FUNCTIONAL CAUSAL MODELS; 1.4.1 Structural Equations; 1.4.2 Probabilistic Predictions in Causal Models; 1.4.3 Interventions and Causal Effects in Functional Models; 1.4.4 Counterfactuals in Functional Models; 1.5 CAUSAL VERSUS STATISTICAL TERMINOLOGY; Causal versus Statistical Concepts; Two Mental Barriers to Causal Analysis; CHAPTER TWO A Theory of Inferred Causation; Preface
2.1 INTRODUCTION - THE BASIC INTUITIONS 2.2 THE CAUSAL DISCOVERY FRAMEWORK; 2.3 MODEL PREFERENCE (OCCAM'S RAZOR); 2.4 STABLE DISTRIBUTIONS; 2.5 RECOVERING DAG STRUCTURES; 2.6 RECOVERING LATENT STRUCTURES; 2.7 LOCAL CRITERIA FOR INFERRING CAUSAL RELATIONS; 2.8 NONTEMPORAL CAUSATION AND STATISTICAL TIME; 2.9 CONCLUSIONS; 2.9.1 On Minimality, Markov, and Stability; Relation to the Bayesian Approach; Postscript for the Second Edition; CHAPTER THREE Causal Diagrams and the Identification of Causal Effects; Preface; 3.1 INTRODUCTION; 3.2 INTERVENTION IN MARKOVIAN MODELS
3.2.1 Graphs as Models of Interventions 3.2.2 Interventions as Variables; 3.2.3 Computing the Effect of Interventions; An Example: Dynamic Process Control; Summary; 3.2.4 Identification of Causal Quantities; 3.3 CONTROLLING CONFOUNDING BIAS; 3.3.1 The Back-Door Criterion; 3.3.2 The Front-Door Criterion; 3.3.3 Example: Smoking and the Genotype Theory; 3.4 A CALCULUS OF INTERVENTION; 3.4.1 Preliminary Notation; 3.4.2 Inference Rules; 3.4.3 Symbolic Derivation of Causal Effects: An Example; 3.4.4 Causal Inference by Surrogate Experiments; 3.5 GRAPHICAL TESTS OF IDENTIFIABILITY
3.5.1 Identifying Models 3.5.2 Nonidentifying Models; 3.6 DISCUSSION; 3.6.1 Qualifications and Extensions; 3.6.2 Diagrams as a Mathematical Language; 3.6.3 Translation from Graphs to Potential Outcomes; 3.6.4 Relations to Robins's G-Estimation; Personal Remarks and Acknowledgments; Postscript for the Second Edition; Complete identification results; Applications and Critics; Chapter Road Map to the Main Results; CHAPTER FOUR Actions, Plans, and Direct Effects; Preface; 4.1 INTRODUCTION; 4.1.1 Actions, Acts, and Probabilities; 4.1.2 Actions in Decision Analysis; 4.1.3 Actions and Counterfactuals
4.2 CONDITIONAL ACTIONS AND STOCHASTIC POLICIES
Record Nr. UNINA-9910779404003321
Pearl Judea  
Cambridge : , : Cambridge University Press, , 2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui