top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Embedded machine learning for cyber-physical, IoT, and edge computing : hardware architectures / / Sudeep Pasricha, Muhammad Shafique, editors
Embedded machine learning for cyber-physical, IoT, and edge computing : hardware architectures / / Sudeep Pasricha, Muhammad Shafique, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2024]
Descrizione fisica 1 online resource (418 pages)
Disciplina 006.22
Soggetto topico Embedded computer systems
Cooperating objects (Computer systems)
Artificial intelligence
Embedded Systems
Cyber-Physical Systems
Artificial Intelligence
Sistemes incrustats (Informàtica)
Objectes cooperants (Sistemes informàtics)
Informàtica a la perifèria
Aprenentatge automàtic
ISBN 9783031195686
3-031-19568-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Efficient Hardware Acceleration for Embedded Machine Learning -- Memory Design and Optimization for Embedded Machine Learning -- Efficient Software Design of Embedded Machine Learning -- Hardware-Software Co-Design for Embedded Machine Learning -- Emerging Technologies for Embedded Machine Learning -- Mobile, IoT, and Edge Application Use-Cases for Embedded Machine Learning -- Cyber-Physical Application Use-Cases for Embedded Machine Learning.
Record Nr. UNINA-9910760273503321
Cham, Switzerland : , : Springer, , [2024]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine learning and optimization techniques for automotive cyber-physical systems / / edited by Vipin Kumar Kukkala, Sudeep Pasricha
Machine learning and optimization techniques for automotive cyber-physical systems / / edited by Vipin Kumar Kukkala, Sudeep Pasricha
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (782 pages)
Disciplina 006.22
Altri autori (Persone) KukkalaVipin Kumar
PasrichaSudeep
Soggetto topico Automated vehicles
Cooperating objects (Computer systems)
Machine learning
ISBN 3-031-28016-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1 Reliable Real-time Message Scheduling in Automotive Cyber-Physical Systems -- Chapter 2 Evolvement of Scheduling Theories for Autonomous Vehicles -- Chapter 3 Distributed Coordination and Centralized Scheduling for Automobiles at Intersections -- Chapter 4 Security Aware Design of Time-Critical Automotive Cyber-Physical Systems -- Chapter 5 Secure by Design Autonomous Emergency Braking Systems in Accordance with ISO 21434 -- Chapter 6 Resource Aware Synthesis of Automotive Security Primitives -- Chapter 7 Gradient-free Adversarial Attacks on 3D Point Clouds from LiDAR Sensors -- Chapter 8 Internet of Vehicles- Security and Research Road map -- Chapter 9 Protecting Automotive Controller Area Network: A Review on Intrusion Detection Methods Using Machine Learning Algorithms -- Chapter 10 Real-Time Intrusion Detection in Automotive Cyber-Physical Systems with Recurrent Autoencoders -- Chapter 11 Stacked LSTMs based Anomaly Detection in Time-Critical Automotive Networks -- Chapter 12 Deep AI for Anomaly Detection in Automotive Cyber-Physical Systems -- Chapter 13 Physical Layer Intrusion Detection and Localization on CAN bus -- Chapter 14 Spatiotemporal Information based Intrusion Detection Systems for In-vehicle Networks -- Chapter 15 In-Vehicle ECU Identification and Intrusion Detection from Electrical Signaling -- Chapter 16 Machine Learning for Security Resiliency in Connected Vehicle Applications -- Chapter 17 Object Detection in Autonomous Cyber-Physical Vehicle Platforms: Status and Open Challenges -- Chapter 18 Scene-Graph Embedding for Robust Autonomous Vehicle Perception -- Chapter 19 Sensing Optimization in Automotive Platforms -- Chapter 20 Unsupervised Random Forest Learning for Traffic Scenario Categorization -- Chapter 21 Development of Computer Vision Models for Drivable Region Detection in Snow Occluded Lane Lines -- Chapter 22 Machine Learning Based Perception Architecture Design for Semi-Autonomous Vehicles -- Chapter 23 -- Predictive Control During Acceleration Events to Improve Fuel Economy -- Chapter 24 Learning-based social coordination to improve safety and robustness of cooperative autonomous vehicles in mixed traffic -- Chapter 25 Evaluation of Autonomous Vehicle Control Strategies Using Resilience Engineering -- Chapter 26 Safety-assured Design and Adaptation of Connected and Autonomous Vehicles -- Chapter 27 Identifying and Assessing Research Gaps for Energy Efficient Control of Electrified Autonomous Vehicle Eco-driving.
Record Nr. UNINA-9910743687003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning for Indoor Localization and Navigation / / edited by Saideep Tiku, Sudeep Pasricha
Machine Learning for Indoor Localization and Navigation / / edited by Saideep Tiku, Sudeep Pasricha
Autore Tiku Saideep
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (563 pages)
Disciplina 621.384191
Altri autori (Persone) PasrichaSudeep
Soggetto topico Embedded computer systems
Cooperating objects (Computer systems)
Microprocessors
Computer architecture
Embedded Systems
Cyber-Physical Systems
Processor Architectures
ISBN 3-031-26712-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Indoor Localization and its Challenges -- Advanced Pattern-Matching Techniques for Indoor Localization -- Machine Learning Approaches for Resilience to Device Heterogeneity -- Enabling Temporal Variation Resilience for ML based Indoor Localization -- Deploying Indoor Localization Frameworks for Resource Constrained Devices -- Securing Indoor Localization Frameworks.
Record Nr. UNINA-9910734847903321
Tiku Saideep  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui