top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing : Hardware Architectures / / edited by Sudeep Pasricha, Muhammad Shafique
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing : Hardware Architectures / / edited by Sudeep Pasricha, Muhammad Shafique
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (418 pages)
Disciplina 006.22
Soggetto topico Embedded computer systems
Cooperating objects (Computer systems)
Artificial intelligence
Embedded Systems
Cyber-Physical Systems
Artificial Intelligence
ISBN 9783031195686
303119568X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Efficient Hardware Acceleration for Embedded Machine Learning -- Memory Design and Optimization for Embedded Machine Learning -- Efficient Software Design of Embedded Machine Learning -- Hardware-Software Co-Design for Embedded Machine Learning -- Emerging Technologies for Embedded Machine Learning -- Mobile, IoT, and Edge Application Use-Cases for Embedded Machine Learning -- Cyber-Physical Application Use-Cases for Embedded Machine Learning.
Record Nr. UNINA-9910760273503321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems / / edited by Vipin Kumar Kukkala, Sudeep Pasricha
Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems / / edited by Vipin Kumar Kukkala, Sudeep Pasricha
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (782 pages)
Disciplina 006.22
Altri autori (Persone) KukkalaVipin Kumar
PasrichaSudeep
Soggetto topico Embedded computer systems
Electronic circuit design
Cooperating objects (Computer systems)
Embedded Systems
Electronics Design and Verification
Cyber-Physical Systems
ISBN 9783031280160
3031280164
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1 Reliable Real-time Message Scheduling in Automotive Cyber-Physical Systems -- Chapter 2 Evolvement of Scheduling Theories for Autonomous Vehicles -- Chapter 3 Distributed Coordination and Centralized Scheduling for Automobiles at Intersections -- Chapter 4 Security Aware Design of Time-Critical Automotive Cyber-Physical Systems -- Chapter 5 Secure by Design Autonomous Emergency Braking Systems in Accordance with ISO 21434 -- Chapter 6 Resource Aware Synthesis of Automotive Security Primitives -- Chapter 7 Gradient-free Adversarial Attacks on 3D Point Clouds from LiDAR Sensors -- Chapter 8 Internet of Vehicles- Security and Research Road map -- Chapter 9 Protecting Automotive Controller Area Network: A Review on Intrusion Detection Methods Using Machine Learning Algorithms -- Chapter 10 Real-Time Intrusion Detection in Automotive Cyber-Physical Systems with Recurrent Autoencoders -- Chapter 11 Stacked LSTMs based Anomaly Detection in Time-Critical Automotive Networks -- Chapter 12 Deep AI for Anomaly Detection in Automotive Cyber-Physical Systems -- Chapter 13 Physical Layer Intrusion Detection and Localization on CAN bus -- Chapter 14 Spatiotemporal Information based Intrusion Detection Systems for In-vehicle Networks -- Chapter 15 In-Vehicle ECU Identification and Intrusion Detection from Electrical Signaling -- Chapter 16 Machine Learning for Security Resiliency in Connected Vehicle Applications -- Chapter 17 Object Detection in Autonomous Cyber-Physical Vehicle Platforms: Status and Open Challenges -- Chapter 18 Scene-Graph Embedding for Robust Autonomous Vehicle Perception -- Chapter 19 Sensing Optimization in Automotive Platforms -- Chapter 20 Unsupervised Random Forest Learning for Traffic Scenario Categorization -- Chapter 21 Development of Computer Vision Models for Drivable Region Detection in Snow Occluded Lane Lines.-Chapter 22 Machine Learning Based Perception Architecture Design for Semi-Autonomous Vehicles -- Chapter 23 -- Predictive Control During Acceleration Events to Improve Fuel Economy -- Chapter 24 Learning-based social coordination to improve safety and robustness of cooperative autonomous vehicles in mixed traffic -- Chapter 25 Evaluation of Autonomous Vehicle Control Strategies Using Resilience Engineering -- Chapter 26 Safety-assured Design and Adaptation of Connected and Autonomous Vehicles -- Chapter 27 Identifying and Assessing Research Gaps for Energy Efficient Control of Electrified Autonomous Vehicle Eco-driving.
Record Nr. UNINA-9910743687003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning for Indoor Localization and Navigation / / edited by Saideep Tiku, Sudeep Pasricha
Machine Learning for Indoor Localization and Navigation / / edited by Saideep Tiku, Sudeep Pasricha
Autore Tiku Saideep
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (563 pages)
Disciplina 621.384191
Altri autori (Persone) PasrichaSudeep
Soggetto topico Embedded computer systems
Cooperating objects (Computer systems)
Microprocessors
Computer architecture
Embedded Systems
Cyber-Physical Systems
Processor Architectures
ISBN 9783031267123
3031267125
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Indoor Localization and its Challenges -- Advanced Pattern-Matching Techniques for Indoor Localization -- Machine Learning Approaches for Resilience to Device Heterogeneity -- Enabling Temporal Variation Resilience for ML based Indoor Localization -- Deploying Indoor Localization Frameworks for Resource Constrained Devices -- Securing Indoor Localization Frameworks.
Record Nr. UNINA-9910734847903321
Tiku Saideep  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui