top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Reliability Technology [[electronic resource] ] : Principles and Practice of Failure Prevention in Electronic Systems
Reliability Technology [[electronic resource] ] : Principles and Practice of Failure Prevention in Electronic Systems
Autore Pascoe Norman
Pubbl/distr/stampa Chicester, : Wiley, 2011
Descrizione fisica 1 online resource (414 p.)
Disciplina 621.381
Collana Quality and Reliability Engineering Series
Soggetto topico Electronic apparatus and appliances - Reliability
Electronic apparatus and appliances --Reliability
System failures (Engineering) - Prevention
System failures (Engineering) --Prevention
Electrical & Computer Engineering
Engineering & Applied Sciences
Electrical Engineering
ISBN 1-283-37410-2
9786613374103
0-470-98011-7
0-470-98010-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto RELIABILITY TECHNOLOGY: PRINCIPLES AND PRACTICE OF FAILURE PREVENTION IN ELECTRONIC SYSTEMS; Contents; Foreword by Michael Pecht; Series Editor's Preface; Preface; About the Author; Acknowledgements; 1 The Origins and Evolution of Quality and Reliability; 1.1 Sixty Years of Evolving Electronic Equipment Technology; 1.2 Manufacturing Processes - From Manual Skills to Automation; 1.3 Soldering Systems; 1.4 Component Placement Machines; 1.5 Automatic Test Equipment; 1.6 Lean Manufacturing; 1.7 Outsourcing; 1.8 Electronic System Reliability - Folklore versus Reality; 1.9 The 'Bathtub' Curve
1.10 The Truth about Arrhenius1.11 The Demise of MIL-HDBK-217; 1.12 The Benefits of Commercial Off-The-Shelf (COTS) Products; 1.13 The MoD SMART Procurement Initiative; 1.14 Why do Items Fail?; 1.15 The Importance of Understanding Physics of Failure (PoF); Summary and Questions; References; 2 Product Lifecycle Management; 2.1 Overview; 2.2 Project Management; 2.3 Project Initiation; 2.4 Project Planning; 2.5 Project Execution; 2.6 Project Closure; 2.7 A Process Capability Maturity Model; 2.8 When and How to Define The Distribution Strategy
2.9 Transfer of Design to Manufacturing - The High-Risk Phase2.10 Outsourcing - Understanding and Minimising the Risks; 2.11 How Product Reliability is Increasingly Threatened in the Twenty-First Century; Summary and Questions; References; 3 The Physics of Failure; 3.1 Overview; 3.2 Background; 3.3 Potential Failure Mechanisms in Materials and Components; 3.4 Techniques for Failure Analysis of Components and Assemblies; 3.5 Transition from Tin-Lead to Lead-Free Soldering; 3.6 High-Temperature Electronics and Extreme-Temperature Electronics; 3.7 Some Illustrations of Failure Mechanisms
Summary and QuestionsReferences; 4 Heat Transfer - Theory and Practice; 4.1 Overview; 4.2 Conduction; 4.3 Convection; 4.4 Radiation; 4.5 Thermal Management; 4.6 Principles of Temperature Measurement; 4.7 Temperature Cycling and Thermal Shock; Summary and Questions; References; 5 Shock and Vibration - Theory and Practice; 5.1 Overview; 5.2 Sources of Shock Pulses in the Real Environment; 5.3 Response of Electronic Equipment to Shock Pulses; 5.4 Shock Testing; 5.5 Product Shock Fragility; 5.6 Shock and Vibration Isolation Techniques; 5.7 Sources of Vibration in the Real Environment
5.8 Response of Electronic Equipment to Vibration5.9 Vibration Testing; 5.10 Vibration-Test Fixtures; Summary and Questions; References; 6 Achieving Environmental-Test Realism; 6.1 Overview; 6.2 Environmental-Testing Objectives; 6.3 Environmental-Test Specifications and Standards; 6.4 Quality Standards; 6.5 The Role of the Test Technician; 6.6 Mechanical Testing; 6.7 Climatic Testing; 6.8 Chemical and Biological Testing; 6.9 Combined Environment Testing; 6.10 Electromagnetic Compatibility; 6.11 Avoiding Misinterpretation of Test Standards and Specifications; Summary and Questions; References
7 Essential Reliability Technology Disciplines in Design
Record Nr. UNINA-9910130866103321
Pascoe Norman  
Chicester, : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Reliability technology : principles and practice of failure prevention in electronic systems / / Norman Pascoe
Reliability technology : principles and practice of failure prevention in electronic systems / / Norman Pascoe
Autore Pascoe Norman
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, U.K., : Wiley, 2011
Descrizione fisica 1 online resource (414 p.)
Disciplina 621.381
Collana Wiley series in quality & reliability engineering
Soggetto topico Electronic apparatus and appliances - Reliability
System failures (Engineering) - Prevention
ISBN 1-283-37410-2
9786613374103
0-470-98011-7
0-470-98010-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto RELIABILITY TECHNOLOGY: PRINCIPLES AND PRACTICE OF FAILURE PREVENTION IN ELECTRONIC SYSTEMS; Contents; Foreword by Michael Pecht; Series Editor's Preface; Preface; About the Author; Acknowledgements; 1 The Origins and Evolution of Quality and Reliability; 1.1 Sixty Years of Evolving Electronic Equipment Technology; 1.2 Manufacturing Processes - From Manual Skills to Automation; 1.3 Soldering Systems; 1.4 Component Placement Machines; 1.5 Automatic Test Equipment; 1.6 Lean Manufacturing; 1.7 Outsourcing; 1.8 Electronic System Reliability - Folklore versus Reality; 1.9 The 'Bathtub' Curve
1.10 The Truth about Arrhenius1.11 The Demise of MIL-HDBK-217; 1.12 The Benefits of Commercial Off-The-Shelf (COTS) Products; 1.13 The MoD SMART Procurement Initiative; 1.14 Why do Items Fail?; 1.15 The Importance of Understanding Physics of Failure (PoF); Summary and Questions; References; 2 Product Lifecycle Management; 2.1 Overview; 2.2 Project Management; 2.3 Project Initiation; 2.4 Project Planning; 2.5 Project Execution; 2.6 Project Closure; 2.7 A Process Capability Maturity Model; 2.8 When and How to Define The Distribution Strategy
2.9 Transfer of Design to Manufacturing - The High-Risk Phase2.10 Outsourcing - Understanding and Minimising the Risks; 2.11 How Product Reliability is Increasingly Threatened in the Twenty-First Century; Summary and Questions; References; 3 The Physics of Failure; 3.1 Overview; 3.2 Background; 3.3 Potential Failure Mechanisms in Materials and Components; 3.4 Techniques for Failure Analysis of Components and Assemblies; 3.5 Transition from Tin-Lead to Lead-Free Soldering; 3.6 High-Temperature Electronics and Extreme-Temperature Electronics; 3.7 Some Illustrations of Failure Mechanisms
Summary and QuestionsReferences; 4 Heat Transfer - Theory and Practice; 4.1 Overview; 4.2 Conduction; 4.3 Convection; 4.4 Radiation; 4.5 Thermal Management; 4.6 Principles of Temperature Measurement; 4.7 Temperature Cycling and Thermal Shock; Summary and Questions; References; 5 Shock and Vibration - Theory and Practice; 5.1 Overview; 5.2 Sources of Shock Pulses in the Real Environment; 5.3 Response of Electronic Equipment to Shock Pulses; 5.4 Shock Testing; 5.5 Product Shock Fragility; 5.6 Shock and Vibration Isolation Techniques; 5.7 Sources of Vibration in the Real Environment
5.8 Response of Electronic Equipment to Vibration5.9 Vibration Testing; 5.10 Vibration-Test Fixtures; Summary and Questions; References; 6 Achieving Environmental-Test Realism; 6.1 Overview; 6.2 Environmental-Testing Objectives; 6.3 Environmental-Test Specifications and Standards; 6.4 Quality Standards; 6.5 The Role of the Test Technician; 6.6 Mechanical Testing; 6.7 Climatic Testing; 6.8 Chemical and Biological Testing; 6.9 Combined Environment Testing; 6.10 Electromagnetic Compatibility; 6.11 Avoiding Misinterpretation of Test Standards and Specifications; Summary and Questions; References
7 Essential Reliability Technology Disciplines in Design
Record Nr. UNINA-9910814320203321
Pascoe Norman  
Chichester, West Sussex, U.K., : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui