Enzymes in Environmental Management |
Autore | Parray Javid Ahmad |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Cham : , : Springer, , 2024 |
Descrizione fisica | 1 online resource (107 pages) |
Altri autori (Persone) |
Yaseen MirMohammad
HaghiA. K |
Collana | SpringerBriefs in Environmental Science Series |
ISBN |
9783031748745
9783031748738 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910896194303321 |
Parray Javid Ahmad | ||
Cham : , : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nano-technological intervention in agricultural productivity / / Javid A. Parray, Mohammad Yaseen Mir, Nowsheen Shameem |
Autore | Parray Javid Ahmad |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2021] |
Descrizione fisica | 1 online resource (211 pages) |
Disciplina | 338.16 |
Soggetto topico |
Alternative agriculture
Nanotechnology - Agriculture |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-71486-9
1-119-71489-3 1-119-71483-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- About the Authors -- About the Book -- Chapter 1 Nanotechnology and Nanoparticles -- 1.1 Nanoparticles and Their Functions -- 1.2 Classification of NPs -- 1.2.1 Carbon‐Based NPs -- 1.2.2 Metal Nanoparticles -- 1.2.3 Ceramic NPs -- 1.2.4 Semiconductor NPs -- 1.2.5 Polymeric NPs -- 1.2.6 NPs Based on Lipids -- 1.3 Synthesis of Nanoparticles -- 1.3.1 Top‐Down Synthesis -- 1.3.2 Bottom‐Up Synthesis -- 1.4 NPs and Characterization -- 1.4.1 Morphological Characterization -- 1.4.1.1 SEM Technique -- 1.4.1.2 TEM Technique -- 1.4.2 Structural Characteristics -- 1.4.2.1 XRD -- 1.4.2.2 Energy‐Dispersive X‐ray (EDX) -- 1.4.2.3 XPS -- 1.4.2.4 FT‐IR and Raman Spectroscopies -- 1.4.3 Particle Size and Surface Area Characterization -- 1.4.4 Optical Characterizations -- 1.5 Physicochemical Properties of NPs -- 1.5.1 Mechanical and Optical Properties -- 1.5.2 Magnetic Properties -- 1.5.3 Mechanical Properties -- 1.5.4 Thermal Properties -- 1.6 Functions of NPs -- 1.6.1 Drugs and Medications -- 1.6.2 Materials and Manufacturing -- 1.6.3 Environment -- 1.6.4 Electronics -- 1.6.5 Energy Harvesting -- References -- Chapter 2 Implications of Nanotechnology and Environment -- 2.1 Ecotoxicological Implications of Nanoparticles -- 2.1.1 Ecotoxicity of Fullerenes -- 2.1.2 Ecotoxicity of Carbon Nanotubes -- 2.1.3 Ecotoxicity of Metal Nanoparticles -- 2.1.4 Ecotoxicity of Nanocomposites -- 2.1.5 Ecotoxicity of Oxide Nanoparticles -- 2.2 Nanotechnology and Agriculture -- 2.3 Risk Assessment Factors and Modulation of Nanomaterials -- References -- Chapter 3 Nanotechnology and Disease Management -- 3.1 Recent Advancements in Plant Nanotechnology -- 3.1.1 Cerium Oxide (CeO2) NPs -- 3.1.2 Silver NPs -- 3.1.3 Titanium Dioxide (ToO2) NPs -- 3.1.4 Zinc Oxide (ZnO) NPs -- 3.1.5 Cupric Oxide (CuO) NPs -- 3.1.6 Gold NPs (GNPs).
3.1.7 Carbon Nanotubes -- 3.1.8 Nickel Oxide NPs -- 3.2 Nanotechnology: Role in Plant‐Parasitic Control -- 3.2.1 Nanocapsules: Liposomes and Polymers -- 3.2.1.1 Potential Uses in Controlling Parasitic Weeds -- 3.3 Abiotic Stress‐Tolerant Transgenic Crops and Nanotechnology -- 3.3.1 Nanotechnology in Gene Transfer Experiments -- 3.4 Plant Pathogens and Nanoparticle Biosynthesis -- 3.4.1 Bacteria‐Mediated Biosynthesis -- 3.4.2 Fungal Mediated Biosynthesis -- 3.5 Nanomaterial and Plant Protection Against Pests and Pathogens -- 3.6 Future Perspectives -- References -- Chapter 4 Nanotechnology in Agri‐Food Production -- 4.1 Nanomaterials -- 4.2 Nanotechnology and Food Systems: Food Packing -- 4.3 Nano‐Nutraceuticals -- 4.3.1 Issues with Nano‐Nutraceuticals -- 4.4 Nanotechnological Advancement in Antimicrobial Peptides (AMPs) -- 4.4.1 Passive Nano‐Delivery Systems -- 4.4.1.1 Cyclosporin A -- 4.4.1.2 Nisin -- 4.4.1.3 Polymyxin -- 4.4.2 Antimicrobial Peptides in Targeted Nano‐Delivery Systems -- 4.5 Assessment of Nanotechnology for Enhanced Food Security -- 4.5.1 Framework for Assessing the Potential Role of Nanotechnology in Food -- 4.5.2 Assessment of Nanotechnology Potential Through Literature Survey -- 4.6 Future Perspectives -- References -- Chapter 5 Nanotechnology: Improvement in Agricultural Productivity -- 5.1 Nanoparticle Biosynthesis and Use in Agriculture -- 5.1.1 Silver Nanoparticles -- 5.1.2 Zinc Oxide Nanoparticles -- 5.1.3 Titanium Dioxide (TiO2) Nanoparticles -- 5.2 Nanorobots -- 5.2.1 Environment Monitoring -- 5.2.2 Nanorobot Sensors -- 5.2.3 Pollutant and Chemical Detection -- 5.2.4 Metal Identification -- 5.2.5 Nanorobot Data Transmission -- 5.2.6 Nanorobot System on Nanotechnology Chip -- 5.3 Natural Nanostructures in Food -- 5.3.1 Protein‐Based Nanostructures -- 5.3.1.1 β‐Lactoglobulin -- 5.3.1.2 Serum Albumin. 5.3.1.3 α‐Lactalbumin and Lysozyme (Lys) -- 5.3.1.4 Ovalbumin and Avidin -- 5.3.1.5 Transferrins -- 5.3.1.6 Osteopontin and Osteopontin Lactoperoxidase (OPN) -- 5.3.2 Formation of Natural Nanostructure Subsequently to Molecular Interaction/Complexation -- 5.3.2.1 Lipid‐Based Nanostructures -- References -- Chapter 6 Lignin Nanoparticles: Synthesis and Application -- 6.1 Overview of Lignin Nanoparticles -- 6.2 Lignin Nanoparticle Synthesis (LNPs) -- 6.2.1 Polymerization -- 6.2.2 Acid Precipitation -- 6.2.3 Solvent Exchange Method -- 6.2.4 Ultrasonication -- 6.2.5 Biological Method -- 6.3 Application of Lignin Nanoparticles (LNPs) -- 6.3.1 Antibacterial Activity -- 6.3.2 Antioxidant Activity -- 6.3.3 UV Absorbents -- 6.3.4 Hybrid Nanocomposites -- 6.3.5 Drug Delivery System -- 6.3.6 Adsorbents to Remove Dyes -- 6.3.7 As a Capacitor -- 6.3.8 As a Nano‐trap -- References -- Chapter 7 Contemporary Application of Nanotechnology in Agriculture -- 7.1 Introduction -- 7.2 Nanofertilizers -- 7.3 Nanocomposites -- 7.4 Nanobiosensors -- 7.4.1 Nanosensors in Agriculture -- 7.4.2 Monitoring Soil Conditions and Plant Growth Regulators -- 7.4.3 Plant Pathogen Recognition -- 7.4.4 Detection of Pesticide Residues -- 7.5 Nanopesticides -- 7.6 Natural Nanoparticles: Environmental and Health Implications -- 7.6.1 Water Quality -- 7.6.2 Interactions with Contaminants and Other Organisms -- 7.6.3 Environmental Risks and Biogeochemistry of NNPs -- 7.6.4 Environmental Issues -- 7.7 Future Perspective -- References -- Chapter 8 Nanotechnology: Advances in Plant and Microbial Science -- 8.1 Engineered Nanomaterials and Soil Remediation -- 8.1.1 ENMs: Role in Soil Remediation -- 8.1.1.1 Immobilization -- 8.1.1.2 Photocatalytic Degradation -- 8.2 Fate and Interactions of Nanomaterials in Soil -- 8.2.1 Nanoparticles and Plants -- 8.2.2 Suppressive Effects on Plants. 8.2.3 Promontory Plant Effects -- 8.2.4 Nanoparticles and Impacts on Soil Microbes -- 8.2.5 Zinc and Sulfur Nanoparticles -- 8.2.6 Copper and Silica Nanoparticles -- 8.3 Nanomaterials and Metal Components: Accumulation and Translocation Within Plants -- 8.3.1 NPS: Uptake and Translocation in Plants -- 8.3.2 NPS: Root Uptake and Translocation -- 8.3.3 Assimilated Root Uptake and Translocation Pathways of Nanoparticles -- 8.3.4 NPS: Transformation in the Rhizosphere -- 8.4 Biotransformation of ENPs in Plants -- 8.5 Effect of Nanomaterials on Plants -- 8.5.1 Positive Effects -- 8.5.2 Toxicity -- References -- Chapter 9 Food Application and Processing: Nanotechniques and Bioactive Delivery Systems -- 9.1 Introduction -- 9.2 Phytochemicals and Nanoparticles -- 9.3 Bioactive Delivery Systems -- 9.3.1 Nanotechnology of Natural Products and Drug Delivery -- 9.3.2 Protein‐Based Nanoscale Delivery Systems -- 9.3.3 Polysaccharide‐Based Nanoscale Delivery Systems -- 9.3.4 Complex or Hybrid Nanoscale Delivery Systems -- 9.4 Toxicity of Biodegradable Nanoparticles -- 9.5 Future Perspectives -- References -- Index -- EULA. |
Record Nr. | UNINA-9910554842603321 |
Parray Javid Ahmad | ||
Hoboken, New Jersey : , : Wiley, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nano-technological intervention in agricultural productivity / / Javid A. Parray, Mohammad Yaseen Mir, Nowsheen Shameem |
Autore | Parray Javid Ahmad |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2021] |
Descrizione fisica | 1 online resource (211 pages) |
Disciplina | 338.16 |
Soggetto topico |
Alternative agriculture
Nanotechnology - Agriculture |
ISBN |
1-119-71486-9
1-119-71489-3 1-119-71483-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- About the Authors -- About the Book -- Chapter 1 Nanotechnology and Nanoparticles -- 1.1 Nanoparticles and Their Functions -- 1.2 Classification of NPs -- 1.2.1 Carbon‐Based NPs -- 1.2.2 Metal Nanoparticles -- 1.2.3 Ceramic NPs -- 1.2.4 Semiconductor NPs -- 1.2.5 Polymeric NPs -- 1.2.6 NPs Based on Lipids -- 1.3 Synthesis of Nanoparticles -- 1.3.1 Top‐Down Synthesis -- 1.3.2 Bottom‐Up Synthesis -- 1.4 NPs and Characterization -- 1.4.1 Morphological Characterization -- 1.4.1.1 SEM Technique -- 1.4.1.2 TEM Technique -- 1.4.2 Structural Characteristics -- 1.4.2.1 XRD -- 1.4.2.2 Energy‐Dispersive X‐ray (EDX) -- 1.4.2.3 XPS -- 1.4.2.4 FT‐IR and Raman Spectroscopies -- 1.4.3 Particle Size and Surface Area Characterization -- 1.4.4 Optical Characterizations -- 1.5 Physicochemical Properties of NPs -- 1.5.1 Mechanical and Optical Properties -- 1.5.2 Magnetic Properties -- 1.5.3 Mechanical Properties -- 1.5.4 Thermal Properties -- 1.6 Functions of NPs -- 1.6.1 Drugs and Medications -- 1.6.2 Materials and Manufacturing -- 1.6.3 Environment -- 1.6.4 Electronics -- 1.6.5 Energy Harvesting -- References -- Chapter 2 Implications of Nanotechnology and Environment -- 2.1 Ecotoxicological Implications of Nanoparticles -- 2.1.1 Ecotoxicity of Fullerenes -- 2.1.2 Ecotoxicity of Carbon Nanotubes -- 2.1.3 Ecotoxicity of Metal Nanoparticles -- 2.1.4 Ecotoxicity of Nanocomposites -- 2.1.5 Ecotoxicity of Oxide Nanoparticles -- 2.2 Nanotechnology and Agriculture -- 2.3 Risk Assessment Factors and Modulation of Nanomaterials -- References -- Chapter 3 Nanotechnology and Disease Management -- 3.1 Recent Advancements in Plant Nanotechnology -- 3.1.1 Cerium Oxide (CeO2) NPs -- 3.1.2 Silver NPs -- 3.1.3 Titanium Dioxide (ToO2) NPs -- 3.1.4 Zinc Oxide (ZnO) NPs -- 3.1.5 Cupric Oxide (CuO) NPs -- 3.1.6 Gold NPs (GNPs).
3.1.7 Carbon Nanotubes -- 3.1.8 Nickel Oxide NPs -- 3.2 Nanotechnology: Role in Plant‐Parasitic Control -- 3.2.1 Nanocapsules: Liposomes and Polymers -- 3.2.1.1 Potential Uses in Controlling Parasitic Weeds -- 3.3 Abiotic Stress‐Tolerant Transgenic Crops and Nanotechnology -- 3.3.1 Nanotechnology in Gene Transfer Experiments -- 3.4 Plant Pathogens and Nanoparticle Biosynthesis -- 3.4.1 Bacteria‐Mediated Biosynthesis -- 3.4.2 Fungal Mediated Biosynthesis -- 3.5 Nanomaterial and Plant Protection Against Pests and Pathogens -- 3.6 Future Perspectives -- References -- Chapter 4 Nanotechnology in Agri‐Food Production -- 4.1 Nanomaterials -- 4.2 Nanotechnology and Food Systems: Food Packing -- 4.3 Nano‐Nutraceuticals -- 4.3.1 Issues with Nano‐Nutraceuticals -- 4.4 Nanotechnological Advancement in Antimicrobial Peptides (AMPs) -- 4.4.1 Passive Nano‐Delivery Systems -- 4.4.1.1 Cyclosporin A -- 4.4.1.2 Nisin -- 4.4.1.3 Polymyxin -- 4.4.2 Antimicrobial Peptides in Targeted Nano‐Delivery Systems -- 4.5 Assessment of Nanotechnology for Enhanced Food Security -- 4.5.1 Framework for Assessing the Potential Role of Nanotechnology in Food -- 4.5.2 Assessment of Nanotechnology Potential Through Literature Survey -- 4.6 Future Perspectives -- References -- Chapter 5 Nanotechnology: Improvement in Agricultural Productivity -- 5.1 Nanoparticle Biosynthesis and Use in Agriculture -- 5.1.1 Silver Nanoparticles -- 5.1.2 Zinc Oxide Nanoparticles -- 5.1.3 Titanium Dioxide (TiO2) Nanoparticles -- 5.2 Nanorobots -- 5.2.1 Environment Monitoring -- 5.2.2 Nanorobot Sensors -- 5.2.3 Pollutant and Chemical Detection -- 5.2.4 Metal Identification -- 5.2.5 Nanorobot Data Transmission -- 5.2.6 Nanorobot System on Nanotechnology Chip -- 5.3 Natural Nanostructures in Food -- 5.3.1 Protein‐Based Nanostructures -- 5.3.1.1 β‐Lactoglobulin -- 5.3.1.2 Serum Albumin. 5.3.1.3 α‐Lactalbumin and Lysozyme (Lys) -- 5.3.1.4 Ovalbumin and Avidin -- 5.3.1.5 Transferrins -- 5.3.1.6 Osteopontin and Osteopontin Lactoperoxidase (OPN) -- 5.3.2 Formation of Natural Nanostructure Subsequently to Molecular Interaction/Complexation -- 5.3.2.1 Lipid‐Based Nanostructures -- References -- Chapter 6 Lignin Nanoparticles: Synthesis and Application -- 6.1 Overview of Lignin Nanoparticles -- 6.2 Lignin Nanoparticle Synthesis (LNPs) -- 6.2.1 Polymerization -- 6.2.2 Acid Precipitation -- 6.2.3 Solvent Exchange Method -- 6.2.4 Ultrasonication -- 6.2.5 Biological Method -- 6.3 Application of Lignin Nanoparticles (LNPs) -- 6.3.1 Antibacterial Activity -- 6.3.2 Antioxidant Activity -- 6.3.3 UV Absorbents -- 6.3.4 Hybrid Nanocomposites -- 6.3.5 Drug Delivery System -- 6.3.6 Adsorbents to Remove Dyes -- 6.3.7 As a Capacitor -- 6.3.8 As a Nano‐trap -- References -- Chapter 7 Contemporary Application of Nanotechnology in Agriculture -- 7.1 Introduction -- 7.2 Nanofertilizers -- 7.3 Nanocomposites -- 7.4 Nanobiosensors -- 7.4.1 Nanosensors in Agriculture -- 7.4.2 Monitoring Soil Conditions and Plant Growth Regulators -- 7.4.3 Plant Pathogen Recognition -- 7.4.4 Detection of Pesticide Residues -- 7.5 Nanopesticides -- 7.6 Natural Nanoparticles: Environmental and Health Implications -- 7.6.1 Water Quality -- 7.6.2 Interactions with Contaminants and Other Organisms -- 7.6.3 Environmental Risks and Biogeochemistry of NNPs -- 7.6.4 Environmental Issues -- 7.7 Future Perspective -- References -- Chapter 8 Nanotechnology: Advances in Plant and Microbial Science -- 8.1 Engineered Nanomaterials and Soil Remediation -- 8.1.1 ENMs: Role in Soil Remediation -- 8.1.1.1 Immobilization -- 8.1.1.2 Photocatalytic Degradation -- 8.2 Fate and Interactions of Nanomaterials in Soil -- 8.2.1 Nanoparticles and Plants -- 8.2.2 Suppressive Effects on Plants. 8.2.3 Promontory Plant Effects -- 8.2.4 Nanoparticles and Impacts on Soil Microbes -- 8.2.5 Zinc and Sulfur Nanoparticles -- 8.2.6 Copper and Silica Nanoparticles -- 8.3 Nanomaterials and Metal Components: Accumulation and Translocation Within Plants -- 8.3.1 NPS: Uptake and Translocation in Plants -- 8.3.2 NPS: Root Uptake and Translocation -- 8.3.3 Assimilated Root Uptake and Translocation Pathways of Nanoparticles -- 8.3.4 NPS: Transformation in the Rhizosphere -- 8.4 Biotransformation of ENPs in Plants -- 8.5 Effect of Nanomaterials on Plants -- 8.5.1 Positive Effects -- 8.5.2 Toxicity -- References -- Chapter 9 Food Application and Processing: Nanotechniques and Bioactive Delivery Systems -- 9.1 Introduction -- 9.2 Phytochemicals and Nanoparticles -- 9.3 Bioactive Delivery Systems -- 9.3.1 Nanotechnology of Natural Products and Drug Delivery -- 9.3.2 Protein‐Based Nanoscale Delivery Systems -- 9.3.3 Polysaccharide‐Based Nanoscale Delivery Systems -- 9.3.4 Complex or Hybrid Nanoscale Delivery Systems -- 9.4 Toxicity of Biodegradable Nanoparticles -- 9.5 Future Perspectives -- References -- Index -- EULA. |
Record Nr. | UNINA-9910830937603321 |
Parray Javid Ahmad | ||
Hoboken, New Jersey : , : Wiley, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Progress in Soil Microbiome Research / / edited by Javid Ahmad Parray |
Autore | Parray Javid Ahmad |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (0 pages) |
Disciplina | 551.5 |
Collana | Progress in Soil Science |
Soggetto topico |
Atmospheric science
Atmospheric Science |
ISBN |
9783031714870
9783031714863 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Soil Microbiome A Comprehensive Research Review -- Microbiome and Ecosystem Approaches -- Microbial Consortium with Multifunctional Plant Growth-Promoting Traits and its Significant Contribution in Sustainable Agriculture -- Microbiome Driven Soil Fertility: Understanding Symbiotic Relationships -- Plant Microbiome Research and its Impact on Sustainable Crop Yields. |
Record Nr. | UNINA-9910911290503321 |
Parray Javid Ahmad | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Sustainable Agriculture: Biotechniques in Plant Biology / / by Javid Ahmad Parray, Mohammad Yaseen Mir, Nowsheen Shameem |
Autore | Parray Javid Ahmad |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XVI, 547 p. 13 illus., 10 illus. in color.) |
Disciplina | 630 |
Soggetto topico |
Agriculture
Metabolism Botanical chemistry Plant physiology Metabolomics Plant Biochemistry Plant Physiology Agricultura sostenible Biologia molecular vegetal |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-13-8840-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Plant Biotechnology: Tool for sustainable agriculture -- Chapter 2. Plant metabolomics: Sustainable approach towards crop productivity -- Chapter 3. Rhizosphere engineering and agricultural productivity -- Chapter 4. Plant Genetic engineering and GM crops: Merits and Demerits -- Chapter 5. Stress Management: Sustainable approach towards resilient agriculture -- Chapter 6.Soil Health and Food security -- Chapter 7. Nanotechnology and sustainable agriculture -- Chapter 8. Bioenergy: Plants and products -- Chapter 9.Sustainable agriculture: Future of Plant Biotechnology -- Chapter 10. Advancement in sustainable agriculture: Computational and Bioinformatics tools. |
Record Nr. | UNINA-9910373919203321 |
Parray Javid Ahmad | ||
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|