Functional foods / / edited by Navnidhi Chhikara, Anil Panghal, Gaurav Chaudhary |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] |
Descrizione fisica | 1 online resource (589 pages) |
Disciplina | 641.302 |
Soggetto topico | Functional foods |
Soggetto genere / forma | Electronic books. |
ISBN |
9781119776321
9781119776338 9781119775560 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Overview of Functional Foods -- 1.1 Introduction -- 1.2 Functional Food History and Market -- 1.2.1 History -- 1.2.2 Definition of Functional Foods -- 1.3 Classification of Functional Foods -- 1.4 Types of Functional Foods -- 1.4.1 Dairy Based Functional Foods -- 1.4.2 Cereal Based Functional Foods -- 1.4.3 Fruits and Vegetables Based Functional Foods -- 1.4.4 Seafood, Meat and Poultry Based Functional Foods -- 1.5 Functional Foods and Health Claims -- 1.6 Conclusion -- References -- 2 Prebiotics and Synbiotics in Functional Foods -- 2.1 Introduction -- 2.2 Prebiotics -- 2.3 Prebiotic Dairy Functional Foods -- 2.4 Synbiotics -- 2.5 Synbiotic Dairy Functional Foods -- 2.6 Conclusions -- Acknowledgements -- References -- 3 Cereal-Based Functional Foods -- 3.1 Introduction -- 3.2 Structure and Chemical Composition of Cereal Grains -- 3.2.1 Wheat -- 3.2.2 Buckwheat -- 3.2.3 Oat -- 3.2.4 Barley -- 3.2.5 Flaxseed -- 3.2.6 Psyllium -- 3.2.7 Brown Rice -- 3.2.8 Other Cereals -- 3.3 Functional Foods Produced from Cereal Grains -- 3.3.1 Baked Products and Breakfast Cereals -- 3.3.2 Multigrain Functional Beverages -- 3.4 Conclusion -- References -- 4 Millet Based Functional Food -- 4.1 Introduction -- 4.2 Classification of Millets -- 4.2.1 Major Millets -- 4.2.2 Minor Millets -- 4.3 Nutritional Importance of Major and Minor Millets -- 4.3.1 Major Millets -- 4.3.2 Minor Millets -- 4.4 Grain Structure and Chemical Composition -- 4.4.1 Sorghum and Millet Grain Structure and Appearance -- 4.4.1.1 Sorghum -- 4.4.1.2 Millets -- 4.4.2 Chemical Composition of Millets -- 4.5 Functional Compounds Present in Millets -- 4.5.1 Polyphenols -- 4.5.2 Flavonoids -- 4.5.3 Phytate -- 4.5.4 Xylo-Oligosaccharides -- 4.5.5 Carotenoid and Tocopherols.
4.6 Millet and Sorghum Based Commercial Products -- 4.7 Millet Based Functional Food Products -- 4.7.1 Probiotics -- 4.7.2 Prebiotics -- 4.7.3 Super Foods -- 4.8 Health Benefits of Millet Based Functional Food -- 4.8.1 Diabetes -- 4.8.2 Cataractogenesis Inhibition -- 4.8.3 Wound Healing and Nerve Growth Factor (NGF) Production -- 4.8.4 Antioxidant Activity (AA) -- 4.8.5 Other Health Beneficial Effects -- 4.9 Future Aspects -- 4.10 Challenges -- 4.11 Conclusions -- References -- 5 Dairy Milk Based Functional Foods -- 5.1 Introduction -- 5.2 Functional Foods and Regulation -- 5.3 Functional Dairy Foods -- 5.3.1 Probiotics -- 5.3.2 Prebiotics -- 5.4 Industrial Processing of Functional Dairy Products -- 5.4.1 Factors That Affects the Viability of Probiotics During Processing and Storage -- 5.5 Conclusions -- Acknowledgements -- References -- 6 Fruits and Vegetable Functional Foods -- 6.1 Introduction -- 6.2 Fruit and Vegetable as Functional Ingredients -- 6.3 Common Functional Compounds in Fruits and Vegetables -- 6.3.1 Carbohydrates -- 6.3.2 Protein -- 6.3.3 Lipid -- 6.3.4 Vitamins -- 6.3.5 Polyphenols -- 6.3.6 Carotenoids -- 6.3.7 Glucosinolates -- 6.4 Physicochemical Treatments to Produce Fruit and Vegetable Based Ingredients -- 6.4.1 Preliminary Operations to Obtain Ingredients from Fruits and Vegetable -- 6.5 Main Technologies to Obtain Powder Ingredients from Fruits and Vegetable -- 6.5.1 Conventional Oven Drying -- 6.5.2 Vacuum Drying -- 6.5.3 Freeze-Drying -- 6.5.4 Microwave Drying -- 6.5.5 Osmotic Dehydration -- 6.5.6 Size Reduction Process -- 6.5.7 From Fruits and Vegetable to Liquid Ingredients -- 6.5.8 Spray Drying -- 6.6 Foods as Carriers of Bioactive Compounds from Fruits and Vegetable -- 6.6.1 Bakery Foods -- 6.6.2 Pasta Like-Products -- 6.6.3 Snacks -- 6.6.4 Beverages -- 6.7 Fruits and Vegetable By-Products as Functional Ingredients. 6.8 Impact of Food Processing on the Biofunctional Properties -- 6.9 Concluding Remarks and Future Outlooks -- Acknowledgements -- References -- 7 Meat Based Functional Foods -- 7.1 Introduction -- 7.2 Meat Role in the Nourishments -- 7.2.1 Meat Nutrition -- 7.2.2 Source of Protein -- 7.2.3 Vitamins and Minerals in Meat -- 7.3 Types of Meat -- 7.3.1 Red Meat -- 7.3.1.1 White Meat -- 7.3.1.2 Meat as Processed -- 7.4 Benefits of Consuming Meat -- 7.5 Concept of Functional Foods -- 7.6 Creation of Functional Foods Based on Meat -- 7.6.1 Bioactive Compounds Which are Found in Meat -- 7.6.2 Methods Designed for Producing Integrated Meat Foods -- 7.6.3 Reformulation of Products Containing Meat -- 7.6.4 Production of Shelf-Stable, Health Driven Functional Poultry Meat Finger Chips -- 7.6.5 As a Functional Element in Meat and Meat Products, Dietary Fibre -- 7.6.6 Fish Oils for Omega-3s and Lipoprotein Metabolism -- 7.6.7 Improvements in Animal Feed -- 7.6.8 Meat Reformulation -- 7.6.9 Design of Meat-Based Foods with Walnuts -- 7.7 Innovation of Technology for New Dietary Principles -- 7.8 Conclusion -- References -- 8 Seafood Based Functional Foods -- 8.1 Introduction -- 8.2 Fish Protein Hydrolysates -- 8.2.1 Process for Preparing Fish Protein Hydrolysates -- 8.3 Fish Oil -- 8.3.1 Oil Refining -- 8.4 Chitin -- 8.4.1 Source of Chitin -- 8.4.2 Extraction of Chitin -- 8.4.3 Extraction of Chitin Using Biological Process -- 8.5 Fish Roe -- 8.5.1 Fish Roe Protein Concentrates -- 8.6 Gelatine -- 8.7 Conclusions -- References -- 9 Millet Based Functional Foods: Bio-Chemical and Bio-Functional Properties -- 9.1 Introduction -- 9.2 Recent Developments on Millet Based Functional Foods -- 9.3 Millet Nutrition Profile -- 9.3.1 Carbohydrates -- 9.3.2 Protein -- 9.3.3 Lipids -- 9.3.4 Fibers -- 9.3.5 Vitamins -- 9.3.6 Minerals -- 9.3.7 Anti-Nutritional Factors. 9.4 Bioactivities of the Millet Based Functional Foods Compounds -- 9.5 Biomedicinal and Health Potential of Millet-Based Foods -- 9.6 Conclusion -- References -- 10 Mushroom as a Source of Fungal Based Functional Foods -- 10.1 Introduction -- 10.2 Life Cycle of Mushroom -- 10.3 Different Types of Mushroom Cultivation Process -- 10.4 Traditional and Valorised Substrates Used for Cultivation of Mushroom Under SSF Process -- 10.5 Challenges of Mushroom Cultivation and Upcoming Strategies -- 10.6 Mycelium Physiology -- 10.7 Mushroom Mycelium Cultivation Status -- 10.8 Enhancement of Nutritional and Therapeutic Attributes Present in Mycelium and Mushroom -- 10.9 Nutraceuticals Compounds Present in Mycelium and Mushroom Along with their Therapeutic Effects -- 10.10 Food Products Developed from Mushroom Mycelium and Fruit-Bodies -- 10.11 Umami Flavour Extracted from Mushroom Mycelium and Fruit-Bodies -- 10.12 Conclusion -- Abbreviations -- References -- 11 Probiotics and Prebiotics as Functional Foods -- 11.1 Introduction -- 11.2 Immunity of the Gut and its Connection to Microbes -- 11.3 An Overview of Functional Foods -- 11.3.1 Probiotics -- 11.3.2 Prebiotics -- 11.4 Critical Evaluations on Probiotics and Prebiotics -- 11.5 Conclusions -- References -- 12 Food Function and Health Benefits of Functional Foods -- 12.1 Introduction -- 12.2 Functional Foods Terminology and Definition -- 12.2.1 Prebiotics, Probiotics, and Synbiotics -- 12.3 Constituents in Functional Foods -- 12.3.1 Macronutrients -- 12.3.2 Micronutrients -- 12.4 Bioactive Compounds in Functional Foods -- 12.4.1 Phenolic Compounds -- 12.4.2 Flavonoids -- 12.4.3 Alkaloids -- 12.4.4 Terpenes and Terpenoids -- 12.4.5 Saponins -- 12.5 Health Benefits -- 12.5.1 Diabetes Mellitus -- 12.5.2 Cancer -- 12.5.3 Cardiovascular Disease (CVD) -- 12.6 Sources of Functional Foods. 12.6.1 Plant-Based Functional Foods -- 12.6.2 Animal-Based Functional Foods -- 12.6.3 Microbial-Derived Functional Foods -- 12.7 Effect of Processing on Functional Products -- 12.8 Present Status and Future Aspects -- 12.9 Conclusion -- References -- 13 Double Emulsion for Controlled Delivery of Functional Food Ingredients -- 13.1 Introduction -- 13.2 Double Emulsion Formation Mechanism -- 13.3 Types of Functional Ingredient for Delivery -- 13.4 Double Emulsion Particle Specification -- 13.5 Double Emulsion Stability -- 13.5.1 Physical Stability -- 13.5.1.1 Gravitation Separation -- 13.5.1.2 Particle Aggregation -- 13.5.1.3 Flocculation and Coalescence -- 13.5.1.4 Ostwald Ripening -- 13.5.2 Chemical Stability -- 13.6 Release Characteristics -- 13.7 Gastrointestinal Properties -- 13.7.1 Bioavailability and Bioaccessibility -- 13.7.2 Variations in Delivery Properties -- 13.8 Conclusion -- References -- 14 Use of Biopolymers for Packaging of Functional Foods -- 14.1 Introduction -- 14.2 Applications of Biopolymers in Scientific Fields -- 14.2.1 Nanoscale Processing -- 14.2.2 Biomedical Applications -- 14.2.3 Cosmetic Functions -- 14.2.4 Construction Engineering -- 14.2.5 Pharmacology -- 14.3 Food Product Processing -- 14.3.1 Water Purification -- 14.3.2 Enzymology -- 14.3.3 Food Packaging -- 14.4 Use of Biopolymers for Packaging of Functional Foods -- 14.4.1 Antioxidant Packaging of Functional Foods -- 14.4.2 Antimicrobial Packaging -- 14.5 Biopolymers Used for Processing of Functional Foods -- 14.5.1 Starch -- 14.5.2 Poly Lactic Acid (PLA) -- 14.5.3 Cellulose -- 14.5.4 Chitosan -- 14.5.5 Proteins -- 14.5.6 Carrageenan -- 14.5.7 Alginate -- 14.6 Conclusion -- References -- 15 Global Concepts and Regulations in Functional Foods -- 15.1 Introduction -- 15.2 Regulatory Framework of Functional Foods -- 15.2.1 Concept -- 15.2.2 Definition. 15.2.3 International Overview on Functional Food Classification. |
Record Nr. | UNINA-9910555294203321 |
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Functional foods / / edited by Navnidhi Chhikara, Anil Panghal, Gaurav Chaudhary |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] |
Descrizione fisica | 1 online resource (589 pages) |
Disciplina | 641.302 |
Soggetto topico | Functional foods |
ISBN |
1-119-77634-1
1-119-77633-3 1-119-77632-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Overview of Functional Foods -- 1.1 Introduction -- 1.2 Functional Food History and Market -- 1.2.1 History -- 1.2.2 Definition of Functional Foods -- 1.3 Classification of Functional Foods -- 1.4 Types of Functional Foods -- 1.4.1 Dairy Based Functional Foods -- 1.4.2 Cereal Based Functional Foods -- 1.4.3 Fruits and Vegetables Based Functional Foods -- 1.4.4 Seafood, Meat and Poultry Based Functional Foods -- 1.5 Functional Foods and Health Claims -- 1.6 Conclusion -- References -- 2 Prebiotics and Synbiotics in Functional Foods -- 2.1 Introduction -- 2.2 Prebiotics -- 2.3 Prebiotic Dairy Functional Foods -- 2.4 Synbiotics -- 2.5 Synbiotic Dairy Functional Foods -- 2.6 Conclusions -- Acknowledgements -- References -- 3 Cereal-Based Functional Foods -- 3.1 Introduction -- 3.2 Structure and Chemical Composition of Cereal Grains -- 3.2.1 Wheat -- 3.2.2 Buckwheat -- 3.2.3 Oat -- 3.2.4 Barley -- 3.2.5 Flaxseed -- 3.2.6 Psyllium -- 3.2.7 Brown Rice -- 3.2.8 Other Cereals -- 3.3 Functional Foods Produced from Cereal Grains -- 3.3.1 Baked Products and Breakfast Cereals -- 3.3.2 Multigrain Functional Beverages -- 3.4 Conclusion -- References -- 4 Millet Based Functional Food -- 4.1 Introduction -- 4.2 Classification of Millets -- 4.2.1 Major Millets -- 4.2.2 Minor Millets -- 4.3 Nutritional Importance of Major and Minor Millets -- 4.3.1 Major Millets -- 4.3.2 Minor Millets -- 4.4 Grain Structure and Chemical Composition -- 4.4.1 Sorghum and Millet Grain Structure and Appearance -- 4.4.1.1 Sorghum -- 4.4.1.2 Millets -- 4.4.2 Chemical Composition of Millets -- 4.5 Functional Compounds Present in Millets -- 4.5.1 Polyphenols -- 4.5.2 Flavonoids -- 4.5.3 Phytate -- 4.5.4 Xylo-Oligosaccharides -- 4.5.5 Carotenoid and Tocopherols.
4.6 Millet and Sorghum Based Commercial Products -- 4.7 Millet Based Functional Food Products -- 4.7.1 Probiotics -- 4.7.2 Prebiotics -- 4.7.3 Super Foods -- 4.8 Health Benefits of Millet Based Functional Food -- 4.8.1 Diabetes -- 4.8.2 Cataractogenesis Inhibition -- 4.8.3 Wound Healing and Nerve Growth Factor (NGF) Production -- 4.8.4 Antioxidant Activity (AA) -- 4.8.5 Other Health Beneficial Effects -- 4.9 Future Aspects -- 4.10 Challenges -- 4.11 Conclusions -- References -- 5 Dairy Milk Based Functional Foods -- 5.1 Introduction -- 5.2 Functional Foods and Regulation -- 5.3 Functional Dairy Foods -- 5.3.1 Probiotics -- 5.3.2 Prebiotics -- 5.4 Industrial Processing of Functional Dairy Products -- 5.4.1 Factors That Affects the Viability of Probiotics During Processing and Storage -- 5.5 Conclusions -- Acknowledgements -- References -- 6 Fruits and Vegetable Functional Foods -- 6.1 Introduction -- 6.2 Fruit and Vegetable as Functional Ingredients -- 6.3 Common Functional Compounds in Fruits and Vegetables -- 6.3.1 Carbohydrates -- 6.3.2 Protein -- 6.3.3 Lipid -- 6.3.4 Vitamins -- 6.3.5 Polyphenols -- 6.3.6 Carotenoids -- 6.3.7 Glucosinolates -- 6.4 Physicochemical Treatments to Produce Fruit and Vegetable Based Ingredients -- 6.4.1 Preliminary Operations to Obtain Ingredients from Fruits and Vegetable -- 6.5 Main Technologies to Obtain Powder Ingredients from Fruits and Vegetable -- 6.5.1 Conventional Oven Drying -- 6.5.2 Vacuum Drying -- 6.5.3 Freeze-Drying -- 6.5.4 Microwave Drying -- 6.5.5 Osmotic Dehydration -- 6.5.6 Size Reduction Process -- 6.5.7 From Fruits and Vegetable to Liquid Ingredients -- 6.5.8 Spray Drying -- 6.6 Foods as Carriers of Bioactive Compounds from Fruits and Vegetable -- 6.6.1 Bakery Foods -- 6.6.2 Pasta Like-Products -- 6.6.3 Snacks -- 6.6.4 Beverages -- 6.7 Fruits and Vegetable By-Products as Functional Ingredients. 6.8 Impact of Food Processing on the Biofunctional Properties -- 6.9 Concluding Remarks and Future Outlooks -- Acknowledgements -- References -- 7 Meat Based Functional Foods -- 7.1 Introduction -- 7.2 Meat Role in the Nourishments -- 7.2.1 Meat Nutrition -- 7.2.2 Source of Protein -- 7.2.3 Vitamins and Minerals in Meat -- 7.3 Types of Meat -- 7.3.1 Red Meat -- 7.3.1.1 White Meat -- 7.3.1.2 Meat as Processed -- 7.4 Benefits of Consuming Meat -- 7.5 Concept of Functional Foods -- 7.6 Creation of Functional Foods Based on Meat -- 7.6.1 Bioactive Compounds Which are Found in Meat -- 7.6.2 Methods Designed for Producing Integrated Meat Foods -- 7.6.3 Reformulation of Products Containing Meat -- 7.6.4 Production of Shelf-Stable, Health Driven Functional Poultry Meat Finger Chips -- 7.6.5 As a Functional Element in Meat and Meat Products, Dietary Fibre -- 7.6.6 Fish Oils for Omega-3s and Lipoprotein Metabolism -- 7.6.7 Improvements in Animal Feed -- 7.6.8 Meat Reformulation -- 7.6.9 Design of Meat-Based Foods with Walnuts -- 7.7 Innovation of Technology for New Dietary Principles -- 7.8 Conclusion -- References -- 8 Seafood Based Functional Foods -- 8.1 Introduction -- 8.2 Fish Protein Hydrolysates -- 8.2.1 Process for Preparing Fish Protein Hydrolysates -- 8.3 Fish Oil -- 8.3.1 Oil Refining -- 8.4 Chitin -- 8.4.1 Source of Chitin -- 8.4.2 Extraction of Chitin -- 8.4.3 Extraction of Chitin Using Biological Process -- 8.5 Fish Roe -- 8.5.1 Fish Roe Protein Concentrates -- 8.6 Gelatine -- 8.7 Conclusions -- References -- 9 Millet Based Functional Foods: Bio-Chemical and Bio-Functional Properties -- 9.1 Introduction -- 9.2 Recent Developments on Millet Based Functional Foods -- 9.3 Millet Nutrition Profile -- 9.3.1 Carbohydrates -- 9.3.2 Protein -- 9.3.3 Lipids -- 9.3.4 Fibers -- 9.3.5 Vitamins -- 9.3.6 Minerals -- 9.3.7 Anti-Nutritional Factors. 9.4 Bioactivities of the Millet Based Functional Foods Compounds -- 9.5 Biomedicinal and Health Potential of Millet-Based Foods -- 9.6 Conclusion -- References -- 10 Mushroom as a Source of Fungal Based Functional Foods -- 10.1 Introduction -- 10.2 Life Cycle of Mushroom -- 10.3 Different Types of Mushroom Cultivation Process -- 10.4 Traditional and Valorised Substrates Used for Cultivation of Mushroom Under SSF Process -- 10.5 Challenges of Mushroom Cultivation and Upcoming Strategies -- 10.6 Mycelium Physiology -- 10.7 Mushroom Mycelium Cultivation Status -- 10.8 Enhancement of Nutritional and Therapeutic Attributes Present in Mycelium and Mushroom -- 10.9 Nutraceuticals Compounds Present in Mycelium and Mushroom Along with their Therapeutic Effects -- 10.10 Food Products Developed from Mushroom Mycelium and Fruit-Bodies -- 10.11 Umami Flavour Extracted from Mushroom Mycelium and Fruit-Bodies -- 10.12 Conclusion -- Abbreviations -- References -- 11 Probiotics and Prebiotics as Functional Foods -- 11.1 Introduction -- 11.2 Immunity of the Gut and its Connection to Microbes -- 11.3 An Overview of Functional Foods -- 11.3.1 Probiotics -- 11.3.2 Prebiotics -- 11.4 Critical Evaluations on Probiotics and Prebiotics -- 11.5 Conclusions -- References -- 12 Food Function and Health Benefits of Functional Foods -- 12.1 Introduction -- 12.2 Functional Foods Terminology and Definition -- 12.2.1 Prebiotics, Probiotics, and Synbiotics -- 12.3 Constituents in Functional Foods -- 12.3.1 Macronutrients -- 12.3.2 Micronutrients -- 12.4 Bioactive Compounds in Functional Foods -- 12.4.1 Phenolic Compounds -- 12.4.2 Flavonoids -- 12.4.3 Alkaloids -- 12.4.4 Terpenes and Terpenoids -- 12.4.5 Saponins -- 12.5 Health Benefits -- 12.5.1 Diabetes Mellitus -- 12.5.2 Cancer -- 12.5.3 Cardiovascular Disease (CVD) -- 12.6 Sources of Functional Foods. 12.6.1 Plant-Based Functional Foods -- 12.6.2 Animal-Based Functional Foods -- 12.6.3 Microbial-Derived Functional Foods -- 12.7 Effect of Processing on Functional Products -- 12.8 Present Status and Future Aspects -- 12.9 Conclusion -- References -- 13 Double Emulsion for Controlled Delivery of Functional Food Ingredients -- 13.1 Introduction -- 13.2 Double Emulsion Formation Mechanism -- 13.3 Types of Functional Ingredient for Delivery -- 13.4 Double Emulsion Particle Specification -- 13.5 Double Emulsion Stability -- 13.5.1 Physical Stability -- 13.5.1.1 Gravitation Separation -- 13.5.1.2 Particle Aggregation -- 13.5.1.3 Flocculation and Coalescence -- 13.5.1.4 Ostwald Ripening -- 13.5.2 Chemical Stability -- 13.6 Release Characteristics -- 13.7 Gastrointestinal Properties -- 13.7.1 Bioavailability and Bioaccessibility -- 13.7.2 Variations in Delivery Properties -- 13.8 Conclusion -- References -- 14 Use of Biopolymers for Packaging of Functional Foods -- 14.1 Introduction -- 14.2 Applications of Biopolymers in Scientific Fields -- 14.2.1 Nanoscale Processing -- 14.2.2 Biomedical Applications -- 14.2.3 Cosmetic Functions -- 14.2.4 Construction Engineering -- 14.2.5 Pharmacology -- 14.3 Food Product Processing -- 14.3.1 Water Purification -- 14.3.2 Enzymology -- 14.3.3 Food Packaging -- 14.4 Use of Biopolymers for Packaging of Functional Foods -- 14.4.1 Antioxidant Packaging of Functional Foods -- 14.4.2 Antimicrobial Packaging -- 14.5 Biopolymers Used for Processing of Functional Foods -- 14.5.1 Starch -- 14.5.2 Poly Lactic Acid (PLA) -- 14.5.3 Cellulose -- 14.5.4 Chitosan -- 14.5.5 Proteins -- 14.5.6 Carrageenan -- 14.5.7 Alginate -- 14.6 Conclusion -- References -- 15 Global Concepts and Regulations in Functional Foods -- 15.1 Introduction -- 15.2 Regulatory Framework of Functional Foods -- 15.2.1 Concept -- 15.2.2 Definition. 15.2.3 International Overview on Functional Food Classification. |
Record Nr. | UNINA-9910677331403321 |
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Harvesting food from weeds / / edited by Prerna Gupta, Navnidhi Chhikara, and Anil Panghal |
Pubbl/distr/stampa | Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023] |
Descrizione fisica | 1 online resource (447 pages) |
Disciplina | 016.016 |
Soggetto topico | Agriculture |
ISBN |
1-119-79300-9
1-119-79299-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910830138403321 |
Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Microbes in the food industry / / edited by Navnidhi Chhikara, Anil Panghal, and Gaurav Chaudhary |
Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc. and Scrivener Publishing LLC, , [2023] |
Descrizione fisica | 1 online resource (507 pages) |
Disciplina | 338.47664 |
Soggetto topico | Processed foods |
ISBN |
1-119-77640-6
1-119-77639-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Food Microbiology: Fundamentals and Techniques -- 1.1 Introduction -- 1.2 Food Microbiology: A Historical Perspective -- 1.3 Beneficial Microbes in Food -- 1.3.1 Factors Influencing Microbial Growth in Food -- 1.3.2 Food Fermentation -- 1.3.3 Probiotics -- 1.3.4 Microbial Bio-Preservatives -- 1.4 Harmful Microbes in Food -- 1.4.1 Factors Influencing Food Spoilage -- 1.4.2 Indicators of Food Spoilage -- 1.4.3 Foodborne Infections and Intoxications -- 1.4.4 Food Preservation to Control Spoilage -- 1.5 Classical Food Microbiological Techniques -- 1.6 Advances in Food Microbiological Techniques -- 1.6.1 Protein-Based Methods -- 1.6.2 DNA-Based Methods -- 1.6.3 Biosensor-Based Methods -- 1.6.4 AI and ML Applications -- 1.7 Regulations Governing Food Microbiology -- 1.8 Conclusions -- References -- Chapter 2 Fermented Foods in Health and Disease Prevention -- 2.1 Fermentation -- 2.1.1 Types of Fermentation -- 2.1.2 Bioactive Compounds -- 2.2 Traditional Fermented Food -- 2.3 Application of Fermentation to Food -- 2.3.1 Fruits and Vegetables-Based Fermented Products -- 2.3.1.1 Kimchi -- 2.3.1.2 Sauerkraut -- 2.3.1.3 Boza -- 2.3.1.4 Wine -- 2.3.1.5 Vinegar -- 2.3.2 Fermented Products from Roots and Tubers -- 2.3.3 Cereals and Legumes-Based Fermented Products -- 2.3.3.1 Beer -- 2.3.3.2 Sourdough -- 2.3.4 Fermentation of Meat, Fish and Seafood -- 2.3.4.1 Meat Sausages -- 2.3.5 Fermented Dairy Products -- 2.3.5.1 Kefir -- 2.3.5.2 Koumiss -- 2.3.5.3 Cheese -- 2.3.5.4 Yogurt -- 2.3.6 Other Fermented Products -- 2.4 Effects of Fermentation on Nutrients -- 2.4.1 Carbohydrates -- 2.4.2 Proteins -- 2.4.3 Fat -- 2.4.4 Micronutrients -- 2.4.4.1 Vitamins -- 2.4.4.2 Minerals -- 2.4.5 Phytonutrients -- 2.5 Health Benefits of Fermented Foods and Beverages -- 2.5.1 Antiallergic Effect.
2.5.2 Antioxidant Activity -- 2.5.3 Antihypertensive Activity -- 2.5.4 Antimicrobial Activity -- 2.5.5 Alleviating Cholesterol Levels -- 2.5.6 Anticancer Activity -- 2.5.7 Effect on Gastrointestinal Diseases -- 2.5.8 Antidiabetic Effect -- 2.6 Food Safety and Quality Control -- 2.7 Conclusions and Future Perspectives -- References -- Chapter 3 Probiotic Dairy Foods -- 3.1 Introduction -- 3.2 Classification and Phylogenetic Properties of Probiotic Microorganisms -- 3.2.1 Lactobacillus Genus -- 3.2.2 Bifidobacterium Genus -- 3.2.3 Lactococcus Genus -- 3.2.4 Streptococcus Genus -- 3.2.5 Enterococcus Genus -- 3.3 Probiotics in the Dairy Matrix -- 3.4 Probiotic Dairy Products -- 3.4.1 Probiotic Yogurt -- 3.4.2 Probiotic Cheese -- 3.4.3 Probiotic Ice Cream -- 3.4.4 Probiotic Dairy-Based Beverages -- References -- Chapter 4 Dairy Probiotic Products -- 4.1 Introduction -- 4.2 Fermented Milks -- 4.2.1 Yogurt -- 4.2.1.1 Effect of Probiotic Supplementation on Yogurt Properties -- 4.2.1.2 Potential Human Health Benefits of Supplementing Yogurts with Probiotics -- 4.2.2 Kefir -- 4.2.3 Cheese -- 4.2.4 Butter -- 4.2.5 Ice Cream -- 4.2.6 Dairy Desserts -- 4.3 Conclusions and Perspectives -- References -- Chapter 5 Design Schematics, Operational Characteristics and Process Applications of Bioreactors -- 5.1 Introduction -- 5.2 Fermenter Design and Operations -- 5.2.1 Structural Material -- 5.2.2 Features of Fermenter Design -- 5.3 Fermenter Configuration -- 5.3.1 Batch Process -- 5.3.1.1 Batch Fermenter Design -- 5.3.2 Continuous Process -- 5.3.2.1 Continuous Stirred Tank Reactor (CSTR) -- 5.3.2.2 Plug Flow Reactor (PFR) -- 5.3.3 Fed Batch or Semi-Continuous Process -- 5.3.3.1 The Constant Volume or Fixed Volume Fed-Batch Reactors -- 5.3.3.2 The Variable Volume Fed-Batch Reactors -- 5.4 Types of Fermenter -- 5.4.1 Stirred Tank Fermenter -- 5.4.2 Airlift Fermenter. 5.4.3 Bubble Column Reactor -- 5.4.4 Fluidized Bed Reactor -- 5.4.5 Packed Bed Reactor -- 5.4.6 Membrane Bioreactor -- 5.5 Factors Influencing Operation of Fermenters -- 5.5.1 Heat Transfer -- 5.5.2 Mass Transfer -- 5.5.3 Scale-Up in Fermenter -- 5.6 Conclusion -- References -- Chapter 6 Enzymes in Food Industry and Their Regulatory Oversight -- 6.1 Introduction -- 6.2 Production of Enzymes -- 6.2.1 Sources of Enzymes -- 6.2.2 Strain Selection -- 6.2.3 Fermentation -- 6.2.4 Pretreatment -- 6.2.5 Downstream Processing -- 6.2.6 Enzyme Formulation -- 6.2.6.1 Formulation of Solid Products -- 6.2.6.2 Formulation of Liquid Products -- 6.3 Applications of Enzymes in Food Industry -- 6.3.1 Enzymes in Starch Processing -- 6.3.2 Enzymes in Baking Industry -- 6.3.3 Enzymes in Brewing Industry -- 6.3.4 Enzymes in Dairy Industry -- 6.3.5 Enzymes in Fruits and Vegetables Processing Industry -- 6.3.6 Other Applications -- 6.4 Safety Evaluation of Enzymes -- 6.4.1 Global Frameworks for Safety Evaluation -- 6.4.2 Environmental Health Criteria 240: Principles and Methods for the Risk Assessment of Chemicals in Food -- 6.4.3 JECFA Guidelines on Safety Assessment of Enzymes -- 6.5 Global Regulatory Frameworks -- 6.6 Regulatory Framework in India -- References -- Chapter 7 Functional and Nutraceutical Potential of Fruits and Vegetables -- 7.1 Introduction -- 7.2 Biochemistry of Fruits and Vegetables -- 7.2.1 Polyphenols and Flavonoids -- 7.2.2 Carotenoids -- 7.2.3 Vitamins -- 7.2.4 Glucosinolates -- 7.2.5 Phytoestrogens -- 7.3 Nutritional Composition of Fruits and Vegetable By-Products -- 7.4 Extraction of Bioactives from Fruits and Vegetables -- 7.4.1 Conventional Extraction Techniques -- 7.4.2 Novel Extraction Techniques -- 7.5 Processing Methods Used for Development of Functional Foods from Fruits and Vegetables -- 7.5.1 Fermentation -- 7.5.1.1 Fermented Products. 7.5.2 Food Fortification -- 7.5.2.1 Superfoods -- 7.5.3 Encapsulation -- 7.6 Fruits and Vegetable-Based Nutraceuticals -- 7.7 Influence of Processing Methods on Functional Ingredients -- 7.8 Influence of Storage on Functional Ingredients -- 7.9 Future of Functional Foods -- Conclusion -- References -- Chapter 8 Microbes as Bio-Factories for the Valorization of Fruit and Vegetable Processing Wastes -- 8.1 Introduction -- 8.2 Microbial Bio-Processing of Fruit and Vegetable Wastes -- 8.3 Valuable Commodities from Fruit and Vegetable Waste -- 8.3.1 Fermented Beverages -- 8.3.2 Food Colorants -- 8.3.3 Single-Cell Protein (SCP) -- 8.3.4 Flavor and Fragrance -- 8.3.5 Enzymes -- 8.3.6 Organic Acids -- 8.3.7 Biopesticides -- 8.3.8 Plant Growth Regulators -- 8.3.9 Polysaccharides -- 8.3.10 Biofuels -- 8.4 Technical Challenges, Economics and Future Prospective -- 8.5 Conclusion -- References -- Chapter 9 Solid-State Fermentation -- 9.1 Introduction -- 9.1.1 Principle of SSF -- 9.1.2 Process of Solid-State Fermentation -- 9.2 History of Solid-State Fermentation (SSF) -- 9.3 Factors Affecting SSF -- 9.3.1 Inoculum Type -- 9.3.2 Moisture and Water Activity -- 9.3.3 pH -- 9.3.4 Temperature -- 9.3.5 Substrates -- 9.3.6 Aeration and Agitation -- 9.3.7 Nutritional Factors -- 9.4 Types of Solid-State Fermentation -- 9.4.1 Aerobic SSF -- 9.4.2 Anaerobic SSF -- 9.5 Application of SSF Carried Out on Inert Support Materials -- 9.5.1 Enzyme -- 9.5.2 Organic Acids -- 9.5.3 Bacteriocins -- 9.5.4 Flavour and Aroma Compounds -- 9.6 Modern Aspects of Solid-State Fermentation -- 9.6.1 Advancement in the Design of Bioreactors for Fermentation -- 9.6.2 Bioreactors in Solid-State Fermentation -- 9.6.2.1 Tray Bioreactor -- 9.6.2.2 Packed-Bed Bioreactor -- 9.6.2.3 Intermittent or Continuously Mixed SSF Bioreactor -- 9.6.2.4 Rotating Drum Bioreactors (RBD) -- 9.6.2.5 Modular Bioreactor. 9.6.2.6 Novozymes Bio A/G Bioreactor -- 9.6.2.7 Air-Solid Fluidized Bed Bioreactor -- 9.6.3 Biotechnology in SSF -- 9.7 Challenges to SSF -- 9.8 Conclusions -- References -- Chapter 10 Pigments Produced by Fungi and Bacteria from Extreme Environments -- 10.1 Introduction -- 10.2 Extreme Environments -- 10.2.1 Polar Ecosystems -- 10.2.2 Alpine and High-Altitude Ecosystems -- 10.2.3 Desert Ecosystems -- 10.2.4 Saline Ecosystems -- 10.2.5 Volcanic Ecosystems -- 10.3 Extremophilic Microorganisms -- 10.3.1 Fungi -- 10.3.2 Bacteria -- Conclusion -- Acknowledgments -- References -- Chapter 11 Commercially Available Databases in Food Microbiology -- 11.1 Introduction -- 11.2 Functions of a Databases -- 11.3 Need for Databases -- 11.4 Predictive Microbiology in Foods -- 11.4.1 History of Predictive Microbiology -- 11.4.2 Terminology in Predictive Microbiology -- 11.5 Predictive Microbiology and Its Models -- 11.5.1 Experimental Design -- 11.5.2 Data Generation -- 11.6 Rapid Methods of Data Generation -- 11.6.1 Turbidimetry -- 11.6.2 Flow Cytometry -- 11.6.3 Microscopy and Image Analysis -- 11.6.4 Electrochemical Methods: Impedance and Conductance -- 11.7 Predictive Models -- 11.7.1 Primary Models -- 11.7.2 Growth Models -- 11.7.2.1 Mechanistic Functions -- 11.7.2.2 Logistic and Linear Functions -- 11.7.2.3 Buchanan Three-Phase Linear Model -- 11.7.2.4 Compartmental Models -- 11.7.3 Inactivation Models -- 11.7.3.1 Bigelow Model (Linear Model) -- 11.7.3.2 Weibull Model -- 11.7.3.3 Shoulder/Tail Models -- 11.7.4 Secondary Models -- 11.7.4.1 Polynomial Models -- 11.7.4.2 Square Root Models -- 11.7.4.3 The Gamma Concept and the Cardinal Parameter Model (CPM) -- 11.7.4.4 Artificial Neural Networks (ANNs) -- 11.7.5 Secondary Inactivation Models -- 11.7.5.1 Probabilistic Modeling -- 11.8 Guidelines for Modeling the Shelf Life of Foods -- 11.9 Databases in Foods. 11.9.1 ComBase (Combined Database on Predictive Microbiology Information). |
Record Nr. | UNINA-9910829972403321 |
Hoboken, NJ : , : John Wiley & Sons, Inc. and Scrivener Publishing LLC, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nonthermal Food Engineering Operations |
Autore | Kumar Nitin |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (526 pages) |
Altri autori (Persone) |
PanghalAnil
GargM. K |
ISBN |
1-119-77646-5
1-119-77645-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Preface -- Chapter 1 Artificial Intelligence (AI) in Food Processing -- 1.1 Introduction -- 1.2 Evolution of Artificial Intelligence -- 1.3 Artificial Intelligence in Food Processing -- 1.4 Artificial Neural Network (ANN) -- 1.4.1 Fats & -- Oils Quality Evaluation -- 1.4.2 Fruits Quality Evaluation -- 1.4.3 Dairy Products Quality Evaluation -- 1.4.4 Solvent Extraction -- 1.4.5 Microwave Assisted Extraction (MAE) -- 1.4.6 Ultrasound-Assisted Extraction (UAE) -- 1.4.7 Microwave Drying -- 1.4.8 Tray Drying -- 1.4.9 Osmotic Dehydration -- 1.4.10 Other Drying Process -- 1.4.11 Extrusion Process -- 1.4.12 Baking -- 1.4.13 Storage of Food Grains -- 1.5 Fuzzy Logic System -- 1.5.1 Fuzzy Logic Systems in Liquid Foods Processing -- 1.5.2 Fuzzy Logic Systems in Solid Foods Processing -- 1.5.3 Semisolid Products -- 1.5.4 Drying Process -- 1.5.5 Baking Process -- 1.5.6 Dairy Process -- 1.5.7 Thermal Process -- 1.5.8 Fermentation -- 1.6 Knowledge.Based Expert System (ES) -- 1.6.1 Applications of ES in the Food Processing Sector -- 1.7 Machine Learning System (ML) -- 1.7.1 Detection of Defects and Mechanical Damage in Fruits -- 1.7.2 ML in Foreign Material Detection -- 1.7.3 ML in Food Quality Evaluation -- 1.8 Conclusion -- References -- Chapter 2 Advances in Ultrasound in Food Industry -- 2.1 Introduction -- 2.2 Background of Ultrasound -- 2.3 Ultrasonic Waves -- 2.4 Applications of Ultrasonics in the Food Industry -- 2.4.1 Food Preservation -- 2.4.2 Food Processing -- 2.5 Detection of Fruit Quality -- 2.6 Ultrasound in Dairy Sector -- 2.7 Conclusion -- References -- Chapter 3 Biosensors in Food Quality and Safety -- 3.1 Introduction -- 3.2 What is a Biosensor? -- 3.2.1 Components of a Biosensor Diagnostic Technique -- 3.2.1.1 Biological Element -- 3.2.1.2 Physicochemical Transducer.
3.2.1.3 Detector/Recognition of Signal -- 3.2.2 Basic Working Mechanism of Biosensors -- 3.2.3 Important Characteristics of Biosensors -- 3.3 Categorization of Biosensors -- 3.3.1 Calorimetric Biosensors -- 3.3.2 Electrochemical Biosensors -- 3.3.2.1 Amperometric Biosensors -- 3.3.2.2 Potentiometric Biosensors -- 3.3.2.3 Conductometric Biosensors -- 3.3.3 Optical Biosensors -- 3.3.4 Microbial-Based Biosensors -- 3.3.4.1 Electrochemical Microbial Biosensors -- 3.3.4.2 Optical Microbial Biosensors -- 3.3.5 Affinity Biosensors -- 3.3.6 Plant Tissue Biosensors -- 3.3.7 Surface Plasmon Resonance (SPR) Biosensors -- 3.3.8 Acoustic Sensors -- 3.3.9 Aptamers -- 3.3.10 Molecularly Imprinted Polymers -- 3.3.11 Immunosensors -- 3.4 Application of Biosensors -- 3.4.1 Scenario of Available Biosensors for the Detection of Various Compounds Present in Food Products -- 3.4.2 Electrochemical Biosensors for Food Products -- 3.4.3 Optical Biosensor -- 3.4.4 Microbial Biosensors -- 3.4.5 Plant Tissue Biosensors -- 3.5 Future Prospects -- References -- Chapter 4 Cold Plasma: Principles and Applications -- 4.1 Introduction -- 4.2 Physics of Plasma -- 4.3 Methods of Generation -- 4.3.1 Dielectric Barrier Discharge (DBD) -- 4.3.2 Glow Discharge -- 4.3.3 Plasma Jet -- 4.3.4 Corona Discharge -- 4.3.5 High Voltage Pulse Discharge -- 4.4 Principles of Cold Plasma Decontamination -- 4.5 Plasma Speciesf Role in Microbial Inactivation -- 4.5.1 Reactive Oxygen and Reactive Nitrogen Species -- 4.6 Cold Plasma Affecting Microbial Cells -- 4.6.1 Effect on Cell Morphology -- 4.6.2 Impact on the Cell Membrane -- 4.6.3 Effect on Nucleic Acids -- 4.6.4 Impact on Enzyme and Proteins Activity -- 4.7 Limitations -- 4.8 Conclusion and Future Prospects -- References -- Chapter 5 Food Extrusion: An Approach to Wholesome Product -- 5.1 Introduction. 5.2 Principle and Components of Extrusion Equipment -- 5.3 Types of Extruders -- 5.3.1 Single Screw Extruders -- 5.3.2 Twin Screw Extruders -- 5.4 Food Product Based on Extrusion Technology -- 5.5 Effect of Extrusion Cooking on Nutritional Aspects of Food -- 5.6 New Research Area of Byproduct Waste Utilization -- 5.7 Conclusion -- References -- Chapter 6 Image Processing Technology, Imaging Techniques, and Their Application in the Food Processing Sector -- 6.1 Introduction -- 6.2 Image Processing Technology -- 6.2.1 Image Acquisition -- 6.2.2 Image Pre-Processing -- 6.2.3 Image Segmentation -- 6.2.4 Feature Extraction -- 6.2.5 Classification -- 6.3 Machine Learning Algorithms -- 6.4 Industrial Applications -- 6.5 Novel Imaging Techniques and Their Applications -- 6.5.1 Near Infrared Imaging -- 6.5.2 Multispectral and Hyperspectral Imaging -- 6.5.3 Raman Imaging -- 6.5.4 Laser Light Backscattering Imaging -- 6.5.5 Structured-Illumination Reflectance Imaging -- 6.5.6 Optical Coherence Tomography -- 6.6 Challenges and Opportunities -- References -- Chapter 7 Active and Passive Modified Atmosphere Packaging: Recent Advances -- 7.1 Introduction -- 7.2 Modified Atmosphere Packaging -- 7.2.1 Passive MAP -- 7.2.1.1 Gases Utilised in Modified Atmosphere Packaging -- 7.2.2 Active MAP -- 7.2.2.1 Active Ingredients -- 7.2.2.2 Dynamics of MAP -- 7.2.2.3 Design of Modified Atmosphere Packaging -- 7.2.2.4 Packaging Materials Used in MAP -- 7.2.3 MAP Combined with Other Preservative Techniques -- 7.2.3.1 Heat Treatment -- 7.2.3.2 Irradiation -- 7.2.3.3 UV Light Radiation -- 7.2.3.4 Ozone Gas -- 7.2.3.5 Edible or Wax Coatings -- 7.2.4 Effect of MAP on Quality of Fresh Produce -- 7.3 Final Remarks -- References -- Chapter 8 Membrane Processing Techniques in Food Engineering -- 8.1 Introduction -- 8.2 Overview of Membranes -- 8.3 Types of Membrane Separation Processes. 8.3.1 Pressure-Driven Processes -- 8.3.2 Filtration Spectrum -- 8.4 Filtration Modes -- 8.4.1 Dead-End Filtration -- 8.4.2 Crossflow Filtration -- 8.4.3 Hybrid-Flow Filtration -- 8.5 Membrane Structure -- 8.6 Important Terms Related to Membrane Processes -- 8.7 Operational Requirements of Membranes -- 8.8 Theoretical Models for Membrane Processes -- 8.9 Factors Affecting the Separation Processes -- 8.10 Major Advantages of Membranes -- 8.11 Microfiltration -- 8.11.1 Microfiltration Applications by Industry -- 8.12 Ultrafiltration -- 8.12.1 UF Applications -- 8.13 Nanofiltration -- 8.13.1 Applications of Nanofiltration -- 8.14 Application of Membrane Separation in Food Industry -- 8.15 Conclusion -- References -- Chapter 9 Nano Technology in Food Packaging -- 9.1 Introduction -- 9.2 Nanomaterials -- 9.2.1 Silver Nanomaterial (AgNPs) -- 9.2.2 Titanium Dioxide (TiO2) -- 9.2.3 Montmorillonite Clay (Nanoclay) -- 9.2.4 Nano Zinc Oxide -- 9.2.5 Nano Silica -- 9.2.6 Carbon Nanotubes (CNTs) -- 9.2.7 Nano Starch -- 9.2.8 Nanocellulose -- 9.3 Use of Nanotechnology in Improved Packaging -- 9.3.1 Improving the Mechanical Strength and Permeability Properties -- 9.3.2 Improving Thermal Stability -- 9.3.3 Accelerating the Biodegradation Process -- 9.4 Use of Nanotechnology in Active Packaging -- 9.4.1 Antimicrobial Packaging -- 9.4.2 Nanoemulsion -- 9.4.3 Oxygen Scavengers -- 9.4.4 Immobilization of Enzymes -- 9.5 Use of Nanotechnology in Smart Packaging -- 9.5.1 Oxygen Sensors -- 9.5.2 Nanosensors for Detection of Pathogens -- 9.5.3 Freshness Indicators -- 9.5.4 Time Temperature Indicators -- 9.6 Toxicological Aspects, Safety Consideration, and Migration of Nanoparticles -- 9.7 Future Outlook and Conclusion -- References -- Chapter 10 Polysaccharide-Based Bionanocomposites for Food Packaging -- 10.1 Introduction -- 10.2 Classification of Polysaccharides. 10.2.1 Plant-Based Polysaccharides -- 10.2.1.1 Starch -- 10.2.1.2 Cellulose -- 10.2.1.3 Galactomannans -- 10.2.2 Animal-Based Polysaccharides -- 10.2.2.1 Chitosan -- 10.2.2.2 Carrageenan -- 10.2.3 Microorganism-Based Polysaccharides -- 10.2.3.1 Xanthan Gum -- 10.2.3.2 Gellan Gum -- 10.2.3.3 Pullulan -- 10.2.3.4 FucoPol -- 10.3 Extraction and Purification of Polysaccharides -- 10.3.1 Extraction of Polysaccharides -- 10.3.1.1 Hot Water Extraction -- 10.3.1.2 Sequential Extraction Method -- 10.3.1.3 Dilute Alkali-Water Extraction -- 10.3.1.4 Microwave-Assisted Extraction -- 10.3.1.5 Ultrasound-Assisted Extraction -- 10.3.1.6 Enzyme-Assisted Extraction -- 10.3.1.7 Subcritical Water Extraction -- 10.3.2 Purification Techniques -- 10.3.2.1 Fractional Precipitation -- 10.3.2.2 Chromatographic Techniques -- 10.4 Polysaccharide-Based Bionanocomposite Fabrication Techniques -- 10.4.1 Solution Intercalation -- 10.4.2 In Situ Intercalative Polymerization -- 10.4.3 Melt Intercalation -- 10.4.4 Extrusion -- 10.4.5 Electrospinning Technique -- 10.4.6 Freeze-Drying Technique -- 10.5 Polysaccharide-Based Nanocomposites: Classification and Food Applications -- 10.5.1 Polysaccharide-Based Nanocomposites with Graphene/Carbon Nanotubes -- 10.5.2 Polysaccharide-Based Nanocomposites with Metal Oxides -- 10.5.2.1 Silver-Based Nanoparticles -- 10.5.2.2 Zinc Oxide Nanoparticles -- 10.5.2.3 Copper Oxide Nanoparticles -- 10.5.2.4 Titanium Dioxide Nanoparticles -- 10.5.3 Polysaccharides-Based Nanocomposites with Other Reinforcement Materials -- 10.5.3.1 Bionanocomposites Based on Starch -- 10.5.3.2 Bionanocomposites Based on Chitosan -- 10.5.3.3 Bionanocomposites Based on Cellulose -- 10.6 Conclusions -- References -- Chapter 11 Smart, Intelligent, and Active Packaging Systems for Shelf-Life Extension of Foods -- 11.1 Introduction -- 11.2 Novel Types of Food Packaging. 11.3 Regulatory Framework. |
Record Nr. | UNINA-9910877032303321 |
Kumar Nitin | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Novel technologies in food science / / edited by Navnidhi Chhikara, Anil Panghal, and Gaurav Chaudhary |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, , [2023] |
Descrizione fisica | 1 online resource (657 pages) |
Disciplina | 664 |
Soggetto topico |
Food - Biotechnology
Food industry and trade |
ISBN |
1-119-77637-6
1-119-77636-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Ultrasound -- 1.1 Introduction -- 1.2 Basic Principles of Ultrasound -- 1.2.1 Generation of the Ultrasonic Wave -- 1.2.2 Principles of Acoustic Cavitation -- 1.3 Mechanisms of Microbial Inactivation -- 1.4 Ultrasound Application in the Food Industry -- 1.4.1 Impact of Ultrasound on Physicochemical Quality Indicators of Food -- 1.4.1.1 Meat Products -- 1.4.1.2 Fruits and Vegetables -- 1.4.1.3 Dairy Industry -- 1.4.2 Effects of Ultrasound Treatment on Sensory Characteristics of Foods -- 1.5 Conclusion -- References -- Chapter 2 Pulse Electric Field: Novel Technology in Food Processing -- 2.1 Introduction -- 2.2 Principle -- 2.3 Electroporation -- 2.4 PEF System -- 2.5 Factors Affecting PEF -- 2.5.1 Process Factors -- 2.5.2 Food Matrix -- 2.5.3 Microbial Factors -- 2.6 Benefits and Shortcomings of PEF -- 2.7 Application in Food Industry -- 2.7.1 Drying -- 2.7.2 Food Preservation -- 2.7.3 Improvement of Extraction of Intracellular Compounds -- 2.8 Effect of PEF on Food Components -- 2.8.1 Proximate Composition -- 2.8.2 Other Components -- 2.8.3 Sensory Attributes -- 2.9 Conclusion -- References -- Chapter 3 An Overview of Membrane Technology in Dairy & -- Food Industry -- List of Abbreviations -- 3.1 Introduction -- 3.2 Terminology in Membrane Processing -- 3.2.1 Membrane -- 3.2.2 Permeate -- 3.2.3 Retentive/Retentate -- 3.2.4 Fouling -- 3.2.5 Concentration Polarization -- 3.2.6 Concentration Factor -- 3.2.7 Feed -- 3.2.8 Flux -- 3.2.9 Pore Size -- 3.2.10 Molecular Weight Cut-Off -- 3.3 Types of Membrane -- 3.3.1 Microporous Membrane -- 3.3.2 Nonporous, Dense Membrane -- 3.3.3 Electrically Charged Membranes -- 3.3.4 Anisotropic Membranes (Asymmetrical) -- 3.3.5 Ceramic, Metal and Liquid Membranes -- 3.4 Processes in Membrane Technology -- 3.4.1 Microfiltration (MF).
3.4.2 Ultrafiltration (UF) -- 3.4.3 Nano-Filtration (NF) -- 3.4.4 Reverse Osmosis (RO) -- 3.5 Membrane Modules -- 3.6 Mechanism of Mass Transfer in Membrane Separation -- 3.6.1 Concentration Polarization (CP) -- 3.6.2 Membrane Fouling -- 3.6.3 Major Categories of Fouling -- 3.6.3.1 Inorganic Fouling -- 3.6.3.2 Organic Fouling -- 3.6.3.3 Colloidal Fouling -- 3.6.3.4 Biological Fouling -- 3.7 Mechanism of Membrane Fouling -- 3.8 Factors Influencing Fouling of Membrane -- 3.8.1 Properties of Membrane -- 3.8.2 Feed Properties -- 3.8.3 Operating Parameters -- 3.9 Prevention of Membrane Fouling -- 3.9.1 Type of Feed and Pre-Treatment -- 3.9.2 Operating Parameters -- 3.9.2.1 Operating Pressure -- 3.9.2.2 Operating Temperature -- 3.9.2.3 Feed Velocity -- 3.10 Mass Transfer Model for Filtration Process in Absence of Fouling -- 3.10.1 Diffusion Theory Through Dense Membrane -- 3.10.2 Transfer Through Porous Membrane - Convective Transfer - Pore Flow Model -- 3.11 Application of the Membrane Technology in Dairy Industry -- 3.11.1 Microfiltration -- 3.11.1.1 Waste Water Processing -- 3.11.1.2 Production of the Protein Concentrate -- 3.11.1.3 Isolation -- 3.11.1.4 Separation of Micellar Casein from the Milk -- 3.11.1.5 Pretreatment of the Cheese Milk -- 3.11.2 Ultrafiltration -- 3.11.2.1 Enzyme Recovery and Concentration -- 3.11.2.2 Cheese Manufacturing -- 3.11.3 Nanofiltration -- 3.11.4 Reverse Osmosis -- 3.12 Application of Membrane Technology in Food Industry -- 3.12.1 Beverages -- 3.12.2 Clarification, Concentration, and Sterilization of Fruit Juices -- 3.12.3 Concentration, De-Acidification, and Demineralization of Juices -- 3.12.4 Demineralization of Sugar Syrup -- 3.12.5 Manufacturing of Beverages Using Vegetable Proteins -- 3.12.6 Rough Beer Clarification -- 3.12.7 Preservation of Beer -- 3.12.8 Membrane Processing in the Wine Industry. 3.12.9 Membrane Processing in Fish, Poultry, and Gelatin Industry -- 3.13 Uses of Membrane Technology in Biotechnology -- 3.13.1 Purification of Proteins -- 3.13.2 Purification of Antibody -- 3.13.3 Controlled Protein Digestion - A Substrate for Mass Spectroscopy -- 3.13.4 Enantiomer Isolation from Racemic Mixtures -- 3.14 Membrane Distillation -- References -- Chapter 4 Cold Plasma -- 4.1 Introduction -- 4.2 Principles and Methods of Plasma Generation -- 4.3 Cold Plasma Applied in Food Systems -- 4.3.1 Modification of Food Components Functionality -- 4.3.2 Cold Plasma Mechanisms Involved in Microbial Inactivation -- 4.3.3 Decontamination of Mycotoxins and Pesticides By Cold Plasma -- 4.3.4 Cold Plasma Mechanisms Involved in Enzyme Inactivation -- 4.3.5 Cold Plasma for Food Packaging -- 4.3.6 Cold Plasma in Biofilms and Surfaces Treatment -- 4.3.7 Cold Plasma in Wastewater Treatment -- 4.4 Conclusions -- References -- Chapter 5 Utilization of Magnetic Fields in Food Industry -- 5.1 Introduction -- 5.2 Magnetism -- 5.2.1 Classification of Magnetic Fields -- 5.2.2 Generation of Magnetic Field -- 5.2.3 Magnetic Field Around a Current Carrying Conductor -- 5.2.4 Effect of Magnetic Fields in Biological Systems -- 5.2.4.1 Effect on Microorganisms -- 5.2.4.2 Operating Conditions -- 5.2.4.3 Characteristics of Magnetic Field -- 5.2.4.4 Temperature -- 5.2.4.5 Microbial Growth Stage -- 5.2.4.6 Electrical Resistivity -- 5.2.4.7 Effect on Enzymes -- 5.3 Potential Applications of Magnetic Fields in Food Industry -- 5.3.1 Compositional Analysis -- 5.3.1.1 Water -- 5.3.1.2 Fat -- 5.3.1.3 Protein -- 5.3.2 Structure Analysis -- 5.4 Food Processing -- 5.4.1 Freezing -- 5.4.2 Drying -- 5.4.3 Frying -- 5.4.4 Fermentation -- 5.4.5 Extraction -- 5.4.6 Packaging -- 5.5 Quality Inspection -- 5.5.1 Fruits -- 5.5.1.1 Apples -- 5.5.1.2 Citrus Fruits -- 5.5.1.3 Kiwifruit. 5.5.2 Vegetables -- 5.5.2.1 Tomato -- 5.5.2.2 Potatoes -- 5.5.3 Cereal and Cereal Products -- 5.5.4 Seafood -- 5.5.5 Other Food Applications -- 5.6 Conclusion -- References -- Chapter 6 Microwaves Application to Food and Food Waste Processing -- 6.1 Introduction to Microwave Technology. Basis of Photon-Matter Interaction in the Microwave Range -- 6.2 Microwaves Applications to Food Process Monitoring -- 6.3 Microwaves in Food Processing -- 6.4 Microwaves Contribution to Food Waste Valorization Processes -- 6.4.1 Microwaves as A Pretreatment for Food Waste Transformation Into Biofuels and Other Value-Added Products -- 6.4.2 Microwaves Applied to the Recovery of Bio-Compounds from Food Wastes -- 6.5 Microwaves for Functional Food Development and Increased Bioaccessibility -- 6.6 Conclusions and Prospects -- References -- Chapter 7 Radio-Frequency Technology in Food Processing -- 7.1 Introduction -- 7.2 RF Technology and Principle -- 7.2.1 Types and Equipment -- 7.2.2 RF vs. Microwave (MW) Heating -- 7.3 Application of RF in Processing -- 7.3.1 Drying -- 7.3.2 Baking -- 7.3.3 Sterilization & -- Pasteurization -- 7.3.4 Roasting -- 7.3.5 Blanching -- 7.3.6 Thawing and Defrosting -- 7.3.7 Inhibition of Anti-Nutritional Factors -- 7.3.8 Disinfestation -- 7.4 Effect on Food Quality -- 7.4.1 Microbiological Quality -- 7.4.2 Nutritional Quality -- 7.5 Future Scope/Prospectus -- 7.6 Conclusion -- References -- Chapter 8 Ultrasound Technology in Food Processing: Technology, Mechanisms and Applications -- 8.1 Introduction -- 8.2 Mechanisms of Action of Ultrasound Technology -- 8.3 Equipment Used for Ultrasonic Applications -- 8.4 Selected Applications of Ultrasounds in Food Processing -- 8.4.1 Ultrasound-Assisted Extraction -- 8.4.2 Ultrasound-Assisted Fermentation -- 8.4.3 Ultrasound-Assisted Filtration -- 8.4.4 Ultrasound-Assisted Emulsification. 8.4.5 Ultrasound-Assisted Drying -- 8.4.6 Ultrasound-Assisted Freezing and Crystallization -- 8.5 Conclusions -- References -- Chapter 9 Irradiation of Food -- 9.1 Irradiation -- 9.1.1 Sources of Radiation -- 9.1.2 Dose Range & -- Dose Mapping -- 9.1.3 Packaging Material for Irradiation -- 9.2 Techniques for Food Irradiation -- 9.2.1 Gamma Rays Irradiators -- 9.2.2 Electron Beam Accelerators -- 9.2.2.1 Direct Methods -- 9.2.2.2 Induction Methods -- 9.2.2.3 Microwave or Radio-Frequency Methods -- 9.2.3 X-Rays (Bremsstrahlung) Irradiators -- 9.3 Wholesomeness of Irradiated Foods -- 9.4 Application of Irradiation on Different Food Commodities -- 9.4.1 Sanitation and Decontamination -- 9.4.2 Sprout Inhibition and Delay in Ripening -- 9.4.3 Insects and Pest Control -- 9.5 Advantages and Disadvantages of Irradiation of Food -- 9.5.1 Advantages of Food Irradiation -- 9.5.2 Disadvantages of Food Irradiation -- 9.6 Factors Affecting Irradiation of Food -- 9.6.1 Water Content -- 9.6.2 Temperature -- 9.7 Interaction of Ionizing Radiation and Food Components -- 9.8 Interaction of Ionizing Radiation and Biological Cells -- 9.9 Interaction of Ionizing Radiation and Food Packaging Materials -- 9.10 Detection and Risk Assessment -- 9.10.1 Detection of Irradiation -- 9.10.2 Risk Assessment of Irradiated Foods -- 9.11 Consumer Behavior Towards Irradiated Food -- 9.12 Standards, Regulations and Legislation on Food Irradiation -- 9.12.1 International Standards -- 9.12.1.1 Human Health -- 9.12.1.2 Labelling -- 9.12.1.3 Plant Protection -- 9.12.1.4 Facilities -- 9.12.1.5 Dosimetry -- 9.12.1.6 Packaging -- 9.12.2 National Regulations -- 9.12.2.1 Regulations for Human Health -- 9.12.2.2 Regulations for Labeling -- 9.12.2.3 Regulations for Plant Health -- 9.13 Future Perspectives and Conclusions -- References -- Chapter 10 Active Packaging in Food Industry. 10.1 Introduction. |
Record Nr. | UNINA-9910677304703321 |
Hoboken, New Jersey : , : John Wiley & Sons, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nutraceuticals from Fruit and Vegetable Waste |
Autore | Tomer Vidisha |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (562 pages) |
Altri autori (Persone) |
ChhikaraNavnidhi
KumarAshwani PanghalAnil |
Collana | Bioprocessing in Food Science Series |
ISBN |
1-119-80398-5
1-119-80397-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Valorisation of Fruit and Vegetable Waste -- 1.1 Introduction -- 1.2 Valorisation of By-Products from Fruit and Vegetable Processing Industry -- 1.2.1 Oil -- 1.2.2 Essential Oils -- 1.2.3 Pectin -- 1.2.4 Pigments -- 1.2.5 Biofuels -- 1.2.6 Organic Acids -- 1.2.7 Enzymes -- 1.2.8 Bioactive Compounds -- 1.2.9 Others -- 1.3 Conclusion -- References -- Chapter 2 Nutraceuticals from Guava Waste -- Abbrevations -- 2.1 Introduction -- 2.2 Guava Waste Types and Composition -- 2.2.1 Guava Leaves -- 2.2.2 Guava Seeds -- 2.2.3 Guava Pulp -- 2.2.4 Guava Pomace -- 2.2.5 Other Waste -- 2.3 Bioactive Potential of Guava Waste -- 2.3.1 Antioxidant Activity -- 2.3.2 Anti-Inflammatory Activity -- 2.3.3 Antidiabetic Activity -- 2.3.4 Antidiarrheal Activity -- 2.3.5 Antimicrobial Activity -- 2.3.6 Anticancer Activity -- 2.3.7 Acne Lesions -- 2.3.8 Antitussive Effects -- 2.3.9 Hepatoprotective Effects -- 2.3.10 Antigenotoxic and Antimutagenic Effects -- 2.3.11 Anti-Allergic Effects -- 2.3.12 Antinociceptive Effects -- 2.3.13 Wound Healing -- 2.4 Application of Guava Waste -- 2.4.1 Health and Cosmetics -- 2.4.2 Food Industry -- 2.4.3 Bio-Remediation -- 2.4.4 Biotechnological Aspects -- 2.4.5 Animal Feed -- 2.4.6 Fermentation -- 2.4.7 Water Treatment Agent -- 2.4.8 Production of Enzymes -- 2.4.9 Functional Ingredient in Developing Various Food Products -- 2.4.10 Other Applications -- 2.5 Conclusion -- References -- Chapter 3 Nutraceuticals from Emblica officinalis Waste -- 3.1 Introduction -- 3.2 Composition of Amla Waste -- 3.2.1 Pomace -- 3.2.1.1 Nutritional Composition -- 3.2.1.2 Phytochemical Composition -- 3.2.1.3 Utilization -- 3.2.2 Amla Seed and Seed Coat -- 3.2.2.1 Nutritional Composition -- 3.2.2.2 Phytochemical Composition -- 3.3 Utilization of Amla Waste.
3.4 Pharmaceutical Potential of Amla Waste -- 3.5 Other Amla Waste -- 3.6 Conclusion -- References -- Chapter 4 Nutraceuticals from Apple Waste -- 4.1 Introduction -- 4.2 Nutritional Profile and Physicochemical Composition -- 4.2.1 Moisture -- 4.2.2 Carbohydrates -- 4.2.3 Polyphenols -- 4.2.4 Lipids -- 4.2.5 Proteins -- 4.2.6 Vitamins -- 4.2.7 Minerals -- 4.2.8 Enzymes -- 4.2.9 Others -- 4.3 Bio-Actives and Functional Ingredients from Apple Pomace -- 4.3.1 Dietary Fibres -- 4.3.2 Pectin -- 4.3.3 Xyloglucan -- 4.3.4 Microcrystalline Cellulose -- 4.3.5 Polyphenols -- 4.3.6 Triterpenoids -- 4.3.7 Organic Acids -- 4.3.8 Minerals -- 4.3.9 Vitamins -- 4.3.10 Natural Pigments -- 4.4 Extraction of Bioactives from Apple Pomace -- 4.4.1 Maceration -- 4.4.2 Microwave-Assisted Extraction (MAE) -- 4.4.3 Ultrasound-Assisted Extraction (UAE) -- 4.4.4 Supercritical Fluid Extraction (SFE) -- 4.5 Use of Apple Pomace for Various Applications -- 4.5.1 Valuable Ingredient for Food Products -- 4.5.1.1 Bakery Products -- 4.5.1.2 Noodles -- 4.5.1.3 Fat and Sugar Replacements -- 4.5.2 Bioplastic Films -- 4.5.3 Production of Acids -- 4.5.4 Natural Colours -- 4.6 Future Prospects and Conclusion -- References -- Chapter 5 Avocado -- 5.1 Introduction -- 5.2 Nutritional Composition of Fruit Waste -- 5.2.1 Fruit -- 5.2.2 Peel -- 5.2.3 Seed -- 5.2.4 Pulp -- 5.3 Phytochemical Composition of Avocado Waste -- 5.3.1 Peel -- 5.3.2 Seed -- 5.3.3 Pulp -- 5.4 Pharmaceutical Potential of Fruit Waste -- 5.4.1 Peel -- 5.4.1.1 Anti-Oxidant Activity -- 5.4.1.2 Anti-Inflammatory Activity -- 5.4.1.3 Antimicrobial Activity -- 5.4.1.4 Anticancer Activity -- 5.4.1.5 Effect on Colonic Homeostasis -- 5.4.1.6 Radioprotective Effect -- 5.4.1.7 Antidiabetic Activity -- 5.4.1.8 Wound-Healing Activity -- 5.4.1.9 Anti-Aging Activity -- 5.4.1.10 Hypolipidemic Activity -- 5.4.1.11 Neuroprotective Activity. 5.4.2 Seed -- 5.4.2.1 Antimicrobial Activity -- 5.4.2.2 Cytotoxic Activity -- 5.4.2.3 Hypo-Cholesterolemic Activity -- 5.4.2.4 Antidiabetic Activity -- 5.4.2.5 Antidiarrhoeal Activity -- 5.4.2.6 Anti-Inflammatory Activity -- 5.4.2.7 Antifungal Activity -- 5.4.2.8 Anti-Oxidant Activity -- 5.4.2.9 Anti-Ototoxicity Activity -- 5.4.2.10 Neuroprotective Activity -- 5.4.2.11 Anti-Proliferative Activity -- 5.4.2.12 Wound-Healing Activity -- 5.4.3 Pulp -- 5.4.3.1 Antimicrobial Activity -- 5.4.3.2 Anticancer Activity -- 5.4.3.3 Antidiabetic and Hepatoprotective Activity -- 5.4.3.4 Hypo-Cholesterolemic Activity -- 5.4.3.5 Anti-Thrombotic Activity -- 5.5 Other Methods of Utilization -- 5.5.1 Peel -- 5.5.2 Seed -- 5.5.3 Pulp -- 5.6 Conclusion -- References -- Websites -- Chapter 6 Banana Waste as a Nutraceuticals Product -- 6.1 Introduction -- 6.2 Chemical Composition -- 6.3 Medicinal Properties -- 6.3.1 Antioxidant Activity -- 6.3.2 Antimicrobial Activity -- 6.4 Utilization of Banana Waste -- 6.5 Development of By-Products from Banana Waste -- 6.5.1 Banana Pseudostem Flour (BPF) -- 6.5.2 Banana Peel Powder (BPP) -- 6.5.3 Banana Peel Extract -- 6.5.4 Whole Green Banana Flour (WGBF) -- 6.5.5 Green Banana Pseudostem Flour (GBPF) -- 6.5.6 Banana Leaf Extract -- 6.5.7 Banana Flower -- 6.6 Summary -- Abbreviations -- References -- Chapter 7 Burmese Grape -- 7.1 Introduction -- 7.2 Burmese Grape Fruit and Fruit Waste -- 7.3 Nutraceuticals and Functional Activities of Burmese Grape Waste -- 7.3.1 Seed -- 7.3.1.1 Source of Fatty Acids -- 7.3.1.2 Source of Polysaccharides -- 7.3.1.3 Phytochemicals and Functional Properties -- 7.3.2 Peel -- 7.3.2.1 Nutrients in Burmese Grape Peel -- 7.3.2.2 Source of Polysaccharides -- 7.3.2.3 Phytochemicals and Functional Properties -- 7.4 Burmese Grape Tree Parts -- 7.4.1 Leaves -- 7.4.1.1 Phytochemicals and Functional Properties. 7.4.2 Stem Bark -- 7.5 Conclusion -- List of Abbreviations -- References -- Chapter 8 Citrus -- 8.1 Introduction -- 8.2 Phytochemicals in Citrus Waste -- 8.3 Principal Non-Conventional Technologies to Extract High Biological Value Compounds from Citrus Waste -- 8.3.1 Ultrasound-Assisted Extraction (UAE) -- 8.3.2 Microwave-Assisted Extraction (MAE) -- 8.3.3 Supercritical Fluid Extraction -- 8.3.4 Pressurized Water Extraction (PWE) -- 8.3.5 Pulsed Electric Field -- 8.3.6 High Hydrostatic Pressures -- 8.3.7 Enzyme-Assisted Extraction (EAE) -- 8.4 Citrus Waste and Its Utilization -- 8.4.1 Citrus Waste and Biofuel Production -- 8.4.2 Citrus Waste and Food Preservation Against -- 8.4.3 Citrus Waste and Bioactive Compounds -- 8.4.4 Citrus Waste and Food, Pharma, and Other Applications -- 8.5 Conclusion -- References -- Chapter 9 Dates -- 9.1 Introduction -- 9.1.1 Dates and Their Origin -- 9.1.2 Stages of Growth of Dates -- 9.1.3 Structure of Dates -- 9.2 Date Seeds -- 9.2.1 Sensory Properties of Date Seeds -- 9.3 Integrating Dates with Food for Developing Value-Added Recipes -- 9.4 Nutritional Benefits -- 9.4.1 Carbohydrates -- 9.4.2 Protein -- 9.4.3 Fat -- 9.4.4 Fiber -- 9.4.5 Vitamins -- 9.4.6 Minerals -- 9.5 Antioxidants and Phytochemicals in Dates -- 9.5.1 Phenols -- 9.5.2 Tocopherols and Tocotrienols -- 9.5.3 Flavonoids -- 9.5.4 Carotenoids -- 9.6 Health Benefits -- 9.7 Conclusion -- References -- Chapter 10 Ginger (Zingiber officinale) -- 10.1 Introduction -- 10.2 Ginger Varieties and Its Features -- 10.3 Nutritional and Phytochemical Components of Ginger -- 10.4 Processing of Ginger -- 10.4.1 Effect of Various Processing on the Functional Properties of Ginger -- 10.5 By-Products Generated from Ginger Processing -- 10.6 Nutraceutical Potential and Utilization of Ginger By-Products -- 10.6.1 Ginger Leaves -- 10.6.2 Ginger Stalk/Stem. 10.6.3 Ginger Peel -- 10.6.4 Ginger Pomace and Precipitate -- 10.7 Future Prospects -- References -- Chapter 11 Jackfruit -- 11.1 Introduction -- 11.2 Types of Jackfruit Waste and By-Products -- 11.3 Nutraceuticals and Functional Activities of Jackfruit Waste and By-Products -- 11.3.1 Jackfruit Seed -- 11.3.1.1 Nutrients -- 11.3.1.2 Phytochemicals and Functional Activities -- 11.3.1.3 Organic Acids -- 11.3.2 Jackfruit Flake -- 11.3.2.1 Nutrients -- 11.3.2.2 Phytochemicals and Functional Properties -- 11.3.2.3 Pectin -- 11.3.2.4 Organic Acids -- 11.3.3 Axis of Jackfruit -- 11.3.3.1 Fatty Acids -- 11.3.3.2 Phytochemicals and Functions -- 11.3.3.3 Pectin -- 11.3.4 Jackfruit Peel -- 11.3.4.1 Proximate Compounds -- 11.3.4.2 Phytochemicals and Their Functional Activities -- 11.3.4.3 Pectin -- 11.4 Parts of Jackfruit Tree -- 11.4.1 Phytochemicals and Functional Properties -- 11.5 Conclusion -- List of Abbreviations -- References -- Chapter 12 Development of Nutraceuticals from the Waste of Loquat -- 12.1 Introduction -- 12.2 Importance of Waste Material of Fruits -- 12.3 The Worldwide Growth Pattern of Loquat -- 12.4 Physiology and Biochemistry of Loquat -- 12.5 Use of Loquat Tree and Its Parts -- 12.6 Nutraceutical Properties -- Conclusion -- References -- Chapter 13 Mango -- 13.1 Introduction -- 13.2 Mango Peel -- 13.3 Nutritional Composition -- 13.4 Phytochemical Composition -- 13.5 Utilization of Mango Peel -- 13.6 Mango Kernel -- 13.7 Nutritional Composition of Mango Kernel -- 13.8 Phytochemical Composition of Mango Kernel -- 13.9 Utilization of Mango Kernel -- 13.10 Other By-Products of Mango Waste -- References -- Chapter 14 Melon -- 14.1 Introduction -- 14.2 History, Origin and Domestication -- 14.3 Diversity and Botanical Groups of Melon -- 14.4 Consumer Preference for Melon -- 14.5 Nutritional Importance, Health Benefits and Culinary Uses of Melon. 14.6 Fruits and Vegetables Wastage. |
Record Nr. | UNINA-9910877182803321 |
Tomer Vidisha | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nutritional Science and Technology : Concept to Application |
Autore | Dhewa Tejpal |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
Descrizione fisica | 1 online resource (430 pages) |
Altri autori (Persone) |
PuniyaAnil Kumar
PanghalAnil |
Collana | Bioprocessing in Food Science Series |
ISBN |
1-394-22911-9
1-394-22910-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Human Nutrition and Supplements -- 1.1 Dietary Supplements - Introduction -- 1.2 Global History of Dietary Supplements -- 1.3 Usage of Dietary Supplements -- 1.4 Types of Dietary Supplements -- 1.4.1 Natural Dietary Supplements -- 1.4.2 Semi-Synthetic Supplements -- 1.4.3 Synthetic Supplements -- 1.5 Nutritional Adequacy and Dietary Diversity -- 1.6 Calcium and Vitamin D Supplements -- 1.7 Omega-3 Fatty Acid and Health Benefits -- 1.8 Zinc Supplementation and Health Benefits -- 1.9 Iron Supplementation and Health Benefits -- 1.10 Dietary Supplements and Sports -- 1.10.1 Protein Concentrates -- 1.10.2 Protein Isolates -- 1.10.3 Protein Hydrolysates -- 1.11 Dietary Supplements and FDA -- 1.12 Dietary Supplements and Toxicity -- References -- Chapter 2 Prebiotics, Probiotics and Synbiotics -- 2.1 Introduction -- 2.2 Prebiotics and Its Types -- 2.2.1 Prebiotics: Definition -- 2.2.2 Sources of Prebiotics -- 2.2.2.1 Galacto-Oligosaccharide -- 2.2.2.2 Fructo-Oligosaccharides -- 2.2.2.3 Starch and Glucose-Derived Oligosaccharide -- 2.2.3 Other Oligosaccharides -- 2.2.4 Health Benefits of Prebiotics -- 2.3 Probiotics -- 2.3.1 History of Probiotics -- 2.3.2 Mongolian History -- 2.3.3 Health Benefits of Probiotics -- 2.3.4 Desired Characteristics of Probiotics -- 2.4 Synbiotics -- 2.4.1 Mechanism of Action of Synbiotics -- 2.4.2 Benefits of Synbiotics -- 2.5 Encapsulation of Probiotics -- 2.5.1 Emulsion -- 2.5.2 Extrusion -- 2.5.3 Spray Drying -- 2.5.4 Spray Chilling -- 2.5.5 Encapsulating Material for Probiotic Cells -- 2.5.6 Challenges with Currently Adopted Methods -- 2.6 Probiotic Foods Developed -- 2.6.1 Viability of Probiotic Cells -- References -- Chapter 3 Mechanistic Insights of Dietary Modulation on Gut Microflora and Associated Physiological Changes.
3.1 Introduction to Flora in the GIT Tract of Humans-Genus Metabolites -- 3.2 Association of Gut Flora and its Impact on Human Health and Associated Diseases -- 3.3 Dietary Modulation of Gut Flora for Therapeutic Usage -- 3.4 Data from Human and Animal Studies -- 3.5 Future Prospects and Conclusion -- References -- Chapter 4 Nutritional Profile, Functional Characteristics, Health Benefits, and Potential Application of Edible Gum (Gond) -- 4.1 Introduction -- 4.2 Nutritional Facts of Gond -- 4.3 Properties of Gond -- 4.4 Biological Sources of Gond -- 4.5 Geographical Sources of Gond -- 4.6 Benefits of Gond -- 4.7 Other Uses of Gond -- Conclusion -- References -- Chapter 5 Omega-3 Fatty Acids: Nutritional Aspects and Their Role in Health and Diseases -- 5.1 Introduction -- 5.2 Nomenclature and Types of Omega-3 Fatty Acids -- 5.3 Food Sources and Supplements -- 5.4 Intake and Safety of Fatty Acids -- 5.5 Health Benefits -- 5.5.1 Omega-3 Fatty Acid and CVDs -- 5.5.2 Omega-3 Fatty Acid and Mental Illnesses -- 5.5.3 Omega-3 Fatty Acids and Diabetes -- 5.5.4 Omega-3 Fatty Acids and Cancer -- 5.6 Conclusion -- References -- Chapter 6 Role of Fermented Dairy Products in Enhancing Immunity -- 6.1 Introduction -- 6.2 Immune Enhancing Potential of Fermented Foods: Mechanism -- 6.3 Fermented Dairy Products Modulators of Intestinal Microbiota -- 6.4 Fermented Dairy Products Modulate Immune System -- 6.4.1 Immune Enhancement -- 6.4.2 Increased Disease Resistance -- 6.4.3 Immunoregulation -- 6.5 Future Trends -- 6.6 Conclusion -- References -- Chapter 7 Potential Applications of Nanotechnology in Food Systems: An Overview -- 7.1 Introduction -- 7.2 Natural Self-Assembled Food Nanostructures -- 7.3 Classification of Nanoparticles Applied in Food Industry -- 7.3.1 Organic Nanoparticles -- 7.3.1.1 Liposomes -- 7.3.1.2 Dendrimers -- 7.3.1.3 Micelles. 7.3.1.4 Carbon Nanoparticles -- 7.3.2 Inorganic Nanoparticles -- 7.3.2.1 Metal Nanoparticles -- 7.3.2.2 Metal-Oxide Nanoparticles -- 7.4 Potential Applications: Nanotechnology in Food Industry -- 7.4.1 Food Processing -- 7.4.1.1 Nanoemulsions -- 7.4.1.2 Nanoencapusulation -- 7.4.1.3 Nanoceuticals -- 7.4.2 Food Packaging -- 7.4.2.1 Active Packaging -- 7.4.2.2 Antimicrobial Packaging -- 7.4.2.3 Physically Improved Food Packaging -- 7.4.2.4 Smart/Intelligent Packaging -- 7.4.2.5 Bio-Based Packaging -- 7.5 Nanotoxicity and Health Hazards -- 7.6 Nanotechnology in Food Industry: Regulatory Issues and Challenges -- 7.7 Food Nanotech: Future Prospects and Conclusion -- References -- Chapter 8 Nutritional Biomarkers in Metabolic Disorders -- 8.1 Introduction -- 8.2 Metabolic Syndrome -- 8.3 Nutritional Biomarkers (NB) -- 8.3.1 Classification of Nutritional Biomarkers (NB) -- 8.3.2 Merits and Demerits of Nutritional Biomarkers -- 8.4 Factors Affecting the Specificity and Utility of Nutritional Biomarkers -- 8.5 Role of Different Nutritional Biomarkers (Serum Biomarkers) in Different Metabolic Syndromes -- 8.5.1 Adipokines -- 8.5.2 Neuropeptide -- 8.5.2.1 Ghrelin -- 8.5.3 Pro-Inflammatory Ctytokine -- 8.5.4 Anti-Inflammatory Cytokine -- 8.5.5 Oxidized Low-Density Lipoproteins (OxLDL) -- 8.5.6 Paraoxonase-1 (PON-1) -- 8.6 Novel Biomarkers -- 8.7 Various Analytical Techniques Related to Different Nutritional Biomarkers -- 8.8 Level of Biomarkers in Extreme Coronavirus Infection -- 8.9 Health Biomarkers -- 8.10 Concept of Omics in Development of New and Integrative Nutritional Biomarkers -- 8.11 Limitations and Challenges in the Field of Nutritional Biomarkers -- 8.12 Future Directions and Perspectives -- 8.13 Conclusions -- References -- Chapter 9 Food Safety and Quality Assurance in the Food Chain: Focus on Foodborne Outbreaks -- 9.1 Introduction. 9.2 Classification of Foodborne Diseases by Symptomatology -- 9.3 The EFSA-ECDC Reports on Zoonoses and Foodborne Outbreaks -- 9.4 The Notifications from the Rapid Alert System for Food and Feed Portal -- 9.5 Conclusions -- References -- Chapter 10 Emerging Techniques in Food Preservation -- 10.1 Introduction -- 10.2 High-Pressure Processing (HPP) -- 10.3 Pulsed Electric Field (PEF) Processing -- 10.4 Pulsed Light Technology (PLT) -- 10.5 Ultrasound Food Processing -- 10.6 Ohmic Heating of Food -- 10.7 Cold Plasma -- 10.8 Oscillating Magnetic Field (OMF) -- 10.9 Higher Pressure Thermal (HPT) Processing -- 10.10 Bacteriocins -- 10.11 Dielectric Heating Using Radio Waves -- 10.12 Microwave -- 10.13 Irradiation -- 10.13.1 Ionizing Radiations -- 10.13.2 Non-Ionizing Radiations -- 10.14 Conclusion -- References -- Chapter 11 Food Omics and Its Implications in Nutritional Sciences -- 11.1 Food Omics: An Overview -- 11.2 Techniques in Food Omics -- 11.2.1 Chromatographic Techniques in Food Analysis -- 11.2.2 Spectroscopic Techniques in Food Analysis -- 11.2.3 Electrochemical Biosensors in Food Analysis -- 11.2.4 Biological Methods in Food Analysis -- 11.2.5 Electrophoretic Methods for Food Analysis -- 11.2.6 Sample Extraction Techniques in Food Omics -- 11.2.6.1 Solid Phase Extraction (SPE) -- 11.2.6.2 Super Critical Fluid Extraction (SFE) -- 11.2.6.3 Headspace Extraction -- 11.2.6.4 Microwave Assisted Extraction (MAE) -- 11.2.6.5 Analytical Thermal Desorption (ATD) -- 11.2.6.6 Flow Injection Analysis -- 11.2.6.7 Hyphenated Extraction -- 11.3 Food Omics Studies & -- Their Challenges -- 11.3.1 Detection of Food-Borne Infections -- 11.3.2 Detection of Food Allergens -- 11.3.3 Detection of Food Associated Viruses -- 11.3.4 Detection of Food Adulterations -- 11.3.5 Automation and Miniaturization -- 11.3.6 Detection of Food Toxins. 11.3.7 Detection of Genetically Modified Foods and Feeds -- 11.3.8 Detection of Nanomaterials -- 11.3.9 Emergence of Green Analytical Methods -- 11.4 Food Omics: A Platform to Investigate Health Benefits -- Conclusions -- References -- Chapter 12 Consumer Viewpoints Regarding Food and Risk Assessment -- 12.1 Introduction -- 12.1.1 How Consumers Form Different Points of View -- 12.1.2 What Do Consumers Want from Food Business Operators? -- 12.2 Food Safety -- 12.2.1 Consumers View and Attitude Towards Food Safety -- 12.2.2 Consumers' View of Novel Techniques and Food Safety Regulations -- 12.2.3 FBOs Took Crisis Steps with Any Food Safety Issue -- 12.3 Food Standards and Regulations in India -- 12.3.1 Food Safety and Standards Act, 2006 -- 12.3.2 Codex Alimentarius Commission (CAC) -- 12.4 The Key Terms Involved in Risk Management -- 12.5 The Fundamental Principles of Food Safety Risk Management -- 12.6 Types of Food Risks -- 12.7 Factors that Modulate Consumers' Perception of Risk -- 12.8 Conclusion -- References -- Chapter 13 Application of Nanomaterials in Detection of Food Contaminants: A Food Safety Perspective -- 13.1 Introduction -- 13.2 Global Scenario from Food Safety Perspective -- 13.3 Current Food Safety Strategies and Food Safety -- 13.4 Application of Nanotechnology in Detection of Food Contaminants -- 13.5 Advancements in Nano-Biosensing of Food Contaminants -- 13.6 Potential Risks and Future Prospects of Nanomaterials in Food Safety -- 13.7 Conclusions -- References -- Chapter 14 Food Allergy and Food Intolerance -- 14.1 Introduction -- 14.2 Food Allergy and Food Intolerance -- 14.3 Food Allergens -- 14.4 Types of Food Allergy -- 14.4.1 IgE Mediated Food Allergies -- 14.4.2 Non-IgE Mediated Food Allergies -- 14.4.3 Mixed IgE and Non-IgE Mediated Food Allergies -- 14.5 Mechanism of Food Allergy. 14.6 Risk Factors Involved in Food Allergy. |
Record Nr. | UNINA-9910830600903321 |
Dhewa Tejpal | ||
Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nutritional Science and Technology : Concept to Application |
Autore | Dhewa Tejpal |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
Descrizione fisica | 1 online resource (430 pages) |
Altri autori (Persone) |
PuniyaAnil Kumar
PanghalAnil |
Collana | Bioprocessing in Food Science Series |
Soggetto topico |
Food science
Biotechnology |
ISBN |
9781394229116
1394229119 9781394229109 1394229100 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Human Nutrition and Supplements -- 1.1 Dietary Supplements - Introduction -- 1.2 Global History of Dietary Supplements -- 1.3 Usage of Dietary Supplements -- 1.4 Types of Dietary Supplements -- 1.4.1 Natural Dietary Supplements -- 1.4.2 Semi-Synthetic Supplements -- 1.4.3 Synthetic Supplements -- 1.5 Nutritional Adequacy and Dietary Diversity -- 1.6 Calcium and Vitamin D Supplements -- 1.7 Omega-3 Fatty Acid and Health Benefits -- 1.8 Zinc Supplementation and Health Benefits -- 1.9 Iron Supplementation and Health Benefits -- 1.10 Dietary Supplements and Sports -- 1.10.1 Protein Concentrates -- 1.10.2 Protein Isolates -- 1.10.3 Protein Hydrolysates -- 1.11 Dietary Supplements and FDA -- 1.12 Dietary Supplements and Toxicity -- References -- Chapter 2 Prebiotics, Probiotics and Synbiotics -- 2.1 Introduction -- 2.2 Prebiotics and Its Types -- 2.2.1 Prebiotics: Definition -- 2.2.2 Sources of Prebiotics -- 2.2.2.1 Galacto-Oligosaccharide -- 2.2.2.2 Fructo-Oligosaccharides -- 2.2.2.3 Starch and Glucose-Derived Oligosaccharide -- 2.2.3 Other Oligosaccharides -- 2.2.4 Health Benefits of Prebiotics -- 2.3 Probiotics -- 2.3.1 History of Probiotics -- 2.3.2 Mongolian History -- 2.3.3 Health Benefits of Probiotics -- 2.3.4 Desired Characteristics of Probiotics -- 2.4 Synbiotics -- 2.4.1 Mechanism of Action of Synbiotics -- 2.4.2 Benefits of Synbiotics -- 2.5 Encapsulation of Probiotics -- 2.5.1 Emulsion -- 2.5.2 Extrusion -- 2.5.3 Spray Drying -- 2.5.4 Spray Chilling -- 2.5.5 Encapsulating Material for Probiotic Cells -- 2.5.6 Challenges with Currently Adopted Methods -- 2.6 Probiotic Foods Developed -- 2.6.1 Viability of Probiotic Cells -- References -- Chapter 3 Mechanistic Insights of Dietary Modulation on Gut Microflora and Associated Physiological Changes.
3.1 Introduction to Flora in the GIT Tract of Humans-Genus Metabolites -- 3.2 Association of Gut Flora and its Impact on Human Health and Associated Diseases -- 3.3 Dietary Modulation of Gut Flora for Therapeutic Usage -- 3.4 Data from Human and Animal Studies -- 3.5 Future Prospects and Conclusion -- References -- Chapter 4 Nutritional Profile, Functional Characteristics, Health Benefits, and Potential Application of Edible Gum (Gond) -- 4.1 Introduction -- 4.2 Nutritional Facts of Gond -- 4.3 Properties of Gond -- 4.4 Biological Sources of Gond -- 4.5 Geographical Sources of Gond -- 4.6 Benefits of Gond -- 4.7 Other Uses of Gond -- Conclusion -- References -- Chapter 5 Omega-3 Fatty Acids: Nutritional Aspects and Their Role in Health and Diseases -- 5.1 Introduction -- 5.2 Nomenclature and Types of Omega-3 Fatty Acids -- 5.3 Food Sources and Supplements -- 5.4 Intake and Safety of Fatty Acids -- 5.5 Health Benefits -- 5.5.1 Omega-3 Fatty Acid and CVDs -- 5.5.2 Omega-3 Fatty Acid and Mental Illnesses -- 5.5.3 Omega-3 Fatty Acids and Diabetes -- 5.5.4 Omega-3 Fatty Acids and Cancer -- 5.6 Conclusion -- References -- Chapter 6 Role of Fermented Dairy Products in Enhancing Immunity -- 6.1 Introduction -- 6.2 Immune Enhancing Potential of Fermented Foods: Mechanism -- 6.3 Fermented Dairy Products Modulators of Intestinal Microbiota -- 6.4 Fermented Dairy Products Modulate Immune System -- 6.4.1 Immune Enhancement -- 6.4.2 Increased Disease Resistance -- 6.4.3 Immunoregulation -- 6.5 Future Trends -- 6.6 Conclusion -- References -- Chapter 7 Potential Applications of Nanotechnology in Food Systems: An Overview -- 7.1 Introduction -- 7.2 Natural Self-Assembled Food Nanostructures -- 7.3 Classification of Nanoparticles Applied in Food Industry -- 7.3.1 Organic Nanoparticles -- 7.3.1.1 Liposomes -- 7.3.1.2 Dendrimers -- 7.3.1.3 Micelles. 7.3.1.4 Carbon Nanoparticles -- 7.3.2 Inorganic Nanoparticles -- 7.3.2.1 Metal Nanoparticles -- 7.3.2.2 Metal-Oxide Nanoparticles -- 7.4 Potential Applications: Nanotechnology in Food Industry -- 7.4.1 Food Processing -- 7.4.1.1 Nanoemulsions -- 7.4.1.2 Nanoencapusulation -- 7.4.1.3 Nanoceuticals -- 7.4.2 Food Packaging -- 7.4.2.1 Active Packaging -- 7.4.2.2 Antimicrobial Packaging -- 7.4.2.3 Physically Improved Food Packaging -- 7.4.2.4 Smart/Intelligent Packaging -- 7.4.2.5 Bio-Based Packaging -- 7.5 Nanotoxicity and Health Hazards -- 7.6 Nanotechnology in Food Industry: Regulatory Issues and Challenges -- 7.7 Food Nanotech: Future Prospects and Conclusion -- References -- Chapter 8 Nutritional Biomarkers in Metabolic Disorders -- 8.1 Introduction -- 8.2 Metabolic Syndrome -- 8.3 Nutritional Biomarkers (NB) -- 8.3.1 Classification of Nutritional Biomarkers (NB) -- 8.3.2 Merits and Demerits of Nutritional Biomarkers -- 8.4 Factors Affecting the Specificity and Utility of Nutritional Biomarkers -- 8.5 Role of Different Nutritional Biomarkers (Serum Biomarkers) in Different Metabolic Syndromes -- 8.5.1 Adipokines -- 8.5.2 Neuropeptide -- 8.5.2.1 Ghrelin -- 8.5.3 Pro-Inflammatory Ctytokine -- 8.5.4 Anti-Inflammatory Cytokine -- 8.5.5 Oxidized Low-Density Lipoproteins (OxLDL) -- 8.5.6 Paraoxonase-1 (PON-1) -- 8.6 Novel Biomarkers -- 8.7 Various Analytical Techniques Related to Different Nutritional Biomarkers -- 8.8 Level of Biomarkers in Extreme Coronavirus Infection -- 8.9 Health Biomarkers -- 8.10 Concept of Omics in Development of New and Integrative Nutritional Biomarkers -- 8.11 Limitations and Challenges in the Field of Nutritional Biomarkers -- 8.12 Future Directions and Perspectives -- 8.13 Conclusions -- References -- Chapter 9 Food Safety and Quality Assurance in the Food Chain: Focus on Foodborne Outbreaks -- 9.1 Introduction. 9.2 Classification of Foodborne Diseases by Symptomatology -- 9.3 The EFSA-ECDC Reports on Zoonoses and Foodborne Outbreaks -- 9.4 The Notifications from the Rapid Alert System for Food and Feed Portal -- 9.5 Conclusions -- References -- Chapter 10 Emerging Techniques in Food Preservation -- 10.1 Introduction -- 10.2 High-Pressure Processing (HPP) -- 10.3 Pulsed Electric Field (PEF) Processing -- 10.4 Pulsed Light Technology (PLT) -- 10.5 Ultrasound Food Processing -- 10.6 Ohmic Heating of Food -- 10.7 Cold Plasma -- 10.8 Oscillating Magnetic Field (OMF) -- 10.9 Higher Pressure Thermal (HPT) Processing -- 10.10 Bacteriocins -- 10.11 Dielectric Heating Using Radio Waves -- 10.12 Microwave -- 10.13 Irradiation -- 10.13.1 Ionizing Radiations -- 10.13.2 Non-Ionizing Radiations -- 10.14 Conclusion -- References -- Chapter 11 Food Omics and Its Implications in Nutritional Sciences -- 11.1 Food Omics: An Overview -- 11.2 Techniques in Food Omics -- 11.2.1 Chromatographic Techniques in Food Analysis -- 11.2.2 Spectroscopic Techniques in Food Analysis -- 11.2.3 Electrochemical Biosensors in Food Analysis -- 11.2.4 Biological Methods in Food Analysis -- 11.2.5 Electrophoretic Methods for Food Analysis -- 11.2.6 Sample Extraction Techniques in Food Omics -- 11.2.6.1 Solid Phase Extraction (SPE) -- 11.2.6.2 Super Critical Fluid Extraction (SFE) -- 11.2.6.3 Headspace Extraction -- 11.2.6.4 Microwave Assisted Extraction (MAE) -- 11.2.6.5 Analytical Thermal Desorption (ATD) -- 11.2.6.6 Flow Injection Analysis -- 11.2.6.7 Hyphenated Extraction -- 11.3 Food Omics Studies & -- Their Challenges -- 11.3.1 Detection of Food-Borne Infections -- 11.3.2 Detection of Food Allergens -- 11.3.3 Detection of Food Associated Viruses -- 11.3.4 Detection of Food Adulterations -- 11.3.5 Automation and Miniaturization -- 11.3.6 Detection of Food Toxins. 11.3.7 Detection of Genetically Modified Foods and Feeds -- 11.3.8 Detection of Nanomaterials -- 11.3.9 Emergence of Green Analytical Methods -- 11.4 Food Omics: A Platform to Investigate Health Benefits -- Conclusions -- References -- Chapter 12 Consumer Viewpoints Regarding Food and Risk Assessment -- 12.1 Introduction -- 12.1.1 How Consumers Form Different Points of View -- 12.1.2 What Do Consumers Want from Food Business Operators? -- 12.2 Food Safety -- 12.2.1 Consumers View and Attitude Towards Food Safety -- 12.2.2 Consumers' View of Novel Techniques and Food Safety Regulations -- 12.2.3 FBOs Took Crisis Steps with Any Food Safety Issue -- 12.3 Food Standards and Regulations in India -- 12.3.1 Food Safety and Standards Act, 2006 -- 12.3.2 Codex Alimentarius Commission (CAC) -- 12.4 The Key Terms Involved in Risk Management -- 12.5 The Fundamental Principles of Food Safety Risk Management -- 12.6 Types of Food Risks -- 12.7 Factors that Modulate Consumers' Perception of Risk -- 12.8 Conclusion -- References -- Chapter 13 Application of Nanomaterials in Detection of Food Contaminants: A Food Safety Perspective -- 13.1 Introduction -- 13.2 Global Scenario from Food Safety Perspective -- 13.3 Current Food Safety Strategies and Food Safety -- 13.4 Application of Nanotechnology in Detection of Food Contaminants -- 13.5 Advancements in Nano-Biosensing of Food Contaminants -- 13.6 Potential Risks and Future Prospects of Nanomaterials in Food Safety -- 13.7 Conclusions -- References -- Chapter 14 Food Allergy and Food Intolerance -- 14.1 Introduction -- 14.2 Food Allergy and Food Intolerance -- 14.3 Food Allergens -- 14.4 Types of Food Allergy -- 14.4.1 IgE Mediated Food Allergies -- 14.4.2 Non-IgE Mediated Food Allergies -- 14.4.3 Mixed IgE and Non-IgE Mediated Food Allergies -- 14.5 Mechanism of Food Allergy. 14.6 Risk Factors Involved in Food Allergy. |
Record Nr. | UNINA-9910840710403321 |
Dhewa Tejpal | ||
Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Thermal food engineering operations / / edited by Nitin Kumar, Anil Panghal, and M. K. Garg |
Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc., , [2022] |
Descrizione fisica | 1 online resource (489 pages) |
Disciplina | 664.028 |
Collana | Bioprocessing in food science |
Soggetto topico |
Food industry and trade
Food - Effect of heat on |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-77643-0
1-119-77642-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910555152203321 |
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|