Vai al contenuto principale della pagina

Geo-Information for Disaster Monitoring and Management



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Pandey Prem C Visualizza persona
Titolo: Geo-Information for Disaster Monitoring and Management Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing AG, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (530 pages)
Disciplina: 363.340285
Altri autori: KumarRajesh  
PandeyManish  
GiulianiGregory  
SharmaR. K  
SrivastavaPrashant K  
Nota di contenuto: Intro -- Foreword by Prof. Kamlesh Lulla -- Foreword by Prof. (Dr.) Shailesh Nayak -- Preface -- Contents -- Editors and Contributors -- Acronyms -- Part I General -- 1 Concepts of Disasters and Research Themes: Editorial Message -- 1.1 Introduction -- 1.1.1 Multi-lateral Frameworks for Disaster Risk Reduction -- 1.2 Types of Disaster -- 1.2.1 Natural Disaster -- 1.3 Disaster Monitoring Through Geo-Information Technology -- 1.4 Scientometric and Systematic Analyses -- 1.4.1 Data Overview -- 1.4.2 Documents Characterization -- 1.4.3 Conceptual Structure -- 1.5 Research Themes -- 1.6 Conclusions -- References -- Part II Geophysical Disasters -- 2 Seismotectonic Study of the Indo-Gangetic Plain Using Distribution and Direction Analysis -- 2.1 Introduction -- 2.2 Materials and Methodology -- 2.2.1 Study Region -- 2.2.2 Tectonic Features -- 2.2.3 Methodology -- 2.3 Results and Discussion -- 2.3.1 Distribution Analysis -- 2.3.2 Directional Analysis -- 2.4 Conclusions -- References -- 3 Earthquake Scenario Mapping Reveals Future Earthquake Hazards on a Portion of the Himalayan Megathrust Fault, NW Himalaya -- 3.1 Introduction -- 3.2 Tectonic and Geological Background -- 3.3 Data Sources and Methods -- 3.3.1 Methodology -- 3.3.2 Results and Interpretations -- 3.4 Discussion -- 3.4.1 Earthquake Scenario Maps -- 3.5 Conclusions -- References -- 4 A Detailed Investigation of Property Damage by Landslide Disaster at NH-5, District Solan, Himachal Pradesh, India -- 4.1 Introduction -- 4.2 Study Area -- 4.3 Geology -- 4.4 Methodology -- 4.5 Result and Discussion -- 4.6 Conclusion -- References -- 5 A Narrative Review of Geospatial Techniques for assessing Climate Change Impacts on Cryosphere, Geo-environmental Hazards and Risks in the Himalayan Region -- 5.1 Introduction -- 5.2 Climatic Fluctuations: A Review -- 5.2.1 Trends in Temperature.
5.2.2 Trends in Precipitation -- 5.3 Impact of Climate Change on the Earth Surface Processes -- 5.3.1 Impact on Glaciers -- 5.3.2 Impact on Snow Cover -- 5.3.3 Impact on River Flow -- 5.3.4 Impact on Glacial Lakes and Landslide Occurrences -- 5.4 Geospatial Techniques for Climate Change Studies -- 5.5 Predictive Geospatial Modeling for Landslide Susceptibility and GLOFs -- 5.6 Geospatial techniques for Landslide Hazard Studies -- 5.7 Geospatial techniques for Glacial Lake Studies -- 5.8 Geospatial techniques for Glacier Studies -- 5.9 Discussion -- 5.10 Conclusion -- References -- 6 Landslide Susceptibility Mapping Using Machine Learning in Himalayan Region: A Review -- 6.1 Introduction -- 6.2 Concepts of Landslide Inventorying (LI) and Landslide Inventory Incompleteness (LII): a Survey of Methods -- 6.3 Conditioning Factors for Landslide: Methods for Selection -- 6.4 Machine Learning Algorithms for Landslide Susceptibility Modelling -- 6.4.1 Landslide Type and Susceptibility Models -- 6.4.2 Standalone Models Versus Ensemble Models -- 6.4.3 Effects of LII on Landslide Susceptibility Modelling Performance -- 6.5 Type of Landscape/Topographic Setting Vis-à-Vis Landslide Susceptibility Model Performances -- 6.6 Conclusion and Future Recommendations -- References -- 7 Assessing Seismic Hazard Potential Considering Topographic Amplification: Combined Analysis of Topographic Slopes, Land Use, and Landslides -- 7.1 Introduction -- 7.2 Physiography and Seismotectonic Setting of the Study Area -- 7.3 Methodology -- 7.3.1 Probabilistic Seismic Hazard Assessment -- 7.3.2 Identification of Topographic Amplification Zones -- 7.3.3 Seismic Hazard Potential Considering Topographic Effects -- 7.4 Result and Discussion -- 7.4.1 Seismic Hazard Map -- 7.4.2 Topographic Amplification-Based Classification and Hazard Potential Zones.
7.4.3 Comparison of Seismic Hazard Potential Zones with Changes in Built Area -- 7.4.4 Discussion -- 7.5 Conclusion -- References -- Part III Hydrological Disasters -- 8 Permafrost-Induced Hazard Zonation Using Satellite Data-Driven Multi-parametric Approach Employing AHP techniques in Alaknanda Valley, Uttarakhand, India -- 8.1 Introduction -- 8.2 Study Area -- 8.3 Materials and Methodology -- 8.3.1 Factors and Preparation of Thematic Layers -- 8.4 Results and Discussions -- 8.5 Conclusion -- References -- 9 High Mountain Hazards in Uttarakhand -- 9.1 Introduction -- 9.2 Study Area -- 9.3 Bhagirathi Valley -- 9.3.1 2002 Event Near Gangotri Temple -- 9.3.2 June 2013 Event in Bhagirathi Basin -- 9.3.3 Debris Flow Event at the Frontal Part of Gangotri Glacier -- 9.3.4 Floods in the Alaknanda Valley -- 9.4 Conclusions and Recommendations -- References -- 10 Spatial-Temporal Characterization of Rainfall in Uttarakhand: Mann-Kendal Test and Graphical Innovative Trend Assessment -- 10.1 Introduction -- 10.2 Study Area and Data Used -- 10.3 Material and Methods -- 10.3.1 Distribution Pattern of Rainfall -- 10.3.2 Variability in Rainfall -- 10.3.3 Trend Analysis -- 10.4 Result and Discussion -- 10.4.1 Exploratory Statistics -- 10.4.2 Deviation in Rainfall Pattern -- 10.4.3 Variability in Rainfall -- 10.4.4 Number of Rain days -- 10.4.5 Trend of Annual Rainfall Intensities -- 10.5 Conclusion -- References -- 11 Land Suitability Estimation for Urban Development in Flood-Prone Regions Using a GIS-Based MCDA Approach -- 11.1 Introduction -- 11.2 Materials and Methods -- 11.2.1 Study Area -- 11.2.2 Data Collection -- 11.2.3 Selection of Land Suitability Indicator -- 11.2.4 Weightage Assignment of LSI Indicators Using AHP -- 11.2.5 Land Suitability Index (LSI) -- 11.3 Result and Discussion.
11.3.1 Distribution of Land Suitability Indicators and Weightage Assignment -- 11.3.2 Estimation and Mapping of LSI -- 11.4 Conclusion -- References -- 12 Artificial Intelligence Algorithms in Flood Prediction: A General Overview -- 12.1 Introduction -- 12.2 Floods: Sources, and Various Physical and Social Aspects -- 12.3 Remote Sensing as Quantifier of the Explanatory Variables for AI -- 12.4 A Brief Overview of AI, ML, and DL Types -- 12.5 Natural Flood Disasters Vis-à-Vis Artificial Intelligence -- 12.5.1 Machine Learning Application in Flood Studies -- 12.5.2 Deep Learning Application in Flood Studies -- 12.6 Advancements and Applications of AI for Studying Floods -- 12.7 Scientometric Analysis -- 12.7.1 Data and Methods -- 12.7.2 Documents Related Analysis -- 12.7.3 Conceptual Structure Analysis: Co-occurrence, Thematic Mapping, and Thematic Evolution of the Theme -- 12.8 Summary, Conclusions, and Future Directions -- References -- 13 Flood Susceptibility Mapping of the Markanda River Basin in North-West India -- 13.1 Introduction -- 13.2 Study Area -- 13.3 Materials and Methods -- 13.4 Basin Geometry and Terrain Generation -- 13.5 Computation of Morphometric Parameters for Flood Susceptibility -- 13.6 Results and Discussion -- 13.7 Determining the Degree of Flood Susceptibility -- 13.8 Accuracy of Flood Susceptibility Map -- 13.9 Conclusions -- References -- Part IV Meteorological Disasters -- 14 Tropical Cyclone: A Basic Perspective -- 14.1 Introduction -- 14.2 Environmental Conditions for Tropical Cyclogenesis -- 14.3 Movement of TCs -- 14.4 Structure of a Tropical Cyclone -- 14.5 Conclusion -- References -- Part V Climatological Disasters -- 15 Basics Concepts and Terminology Related to Climate Resilience -- 15.1 Introduction -- 15.2 Important Concepts and Terminologies of Climate resilience -- 15.2.1 Risk -- 15.2.2 Vulnerability.
15.2.3 Adaptation -- 15.2.4 Climate Resilient Development -- 15.2.5 Climate Resilient Development Pathways -- 15.2.6 Climate Resilience Index (CRI) -- 15.2.7 Urban Disaster Resilience Index (UDRI) -- 15.2.8 Nature-Based Solutions (NbS) -- 15.3 Case Studies -- 15.3.1 Estimation of the Resilience in the Central Highlands of Ethiopia -- 15.3.2 Urban Resilience in Dhaka North City Corporation (DNCC), Bangladesh -- References -- 16 Geospatial Techniques for Drought Assessment in Semi-arid Region of Central India -- 16.1 Introduction -- 16.1.1 Study Area -- 16.2 Methodology -- 16.2.1 Method Used to Assess Drought of the Study Area -- 16.2.2 Evaluation of Drought Characteristics Using SPI -- 16.3 Result and Discussion -- 16.4 Conclusions -- Appendix 16.1 -- References -- 17 Increasing Incidences of Forest Fire in Sikkim, India -- 17.1 Introduction -- 17.2 Hydro-Meteorology and Fire/Forest Fires in Sikkim -- 17.3 Materials and Methods -- 17.3.1 Study Area -- 17.4 Results, Discussions and Conclusion -- References -- 18 Linkage Between the Forest Fires and the Meteorological Parameters During the Current Climatic Regime Using Spatial Clustering, Regression, and Combination Matrix Analysis -- 18.1 Introduction -- 18.2 Study Area -- 18.3 Materials and Methods -- 18.3.1 Database -- 18.4 Methodology -- 18.4.1 Data Preprocessing -- 18.4.2 Spatial Pattern Analysis Using GIS Overlay Approach -- 18.4.3 Statistical Analysis -- 18.4.4 Choosing the Most Appropriate Trendline -- 18.4.5 Combination Matrix Analysis (CMA) -- 18.5 Result and Discussion -- 18.5.1 Forest Cover and Forest Fire Count (FFC)/Density (FFD) Distribution -- 18.5.2 Forest Fire Count/Density and Meteorological Parameters -- 18.5.3 Statistical Analysis of FFC and Meteorological Parameters -- 18.5.4 Combination Matrix Analysis (CMA) -- 18.6 Conclusion and Recommendations -- 18.7 Ethical Statement.
18.8 Grant Information.
Titolo autorizzato: Geo-Information for Disaster Monitoring and Management  Visualizza cluster
ISBN: 3-031-51053-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910864186203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui