top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
MATLAB Machine Learning [[electronic resource] /] / by Michael Paluszek, Stephanie Thomas
MATLAB Machine Learning [[electronic resource] /] / by Michael Paluszek, Stephanie Thomas
Autore Paluszek Michael
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Berkeley, CA : , : Apress : , : Imprint : Apress, , 2017
Descrizione fisica 1 online resource (XIX, 326 p. 140 illus., 74 illus. in color.)
Disciplina 006
Soggetto topico Artificial intelligence
Programming languages (Electronic computers)
Computer programming
Artificial Intelligence
Programming Languages, Compilers, Interpreters
Programming Techniques
ISBN 1-4842-2250-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Overview of Machine Learning -- 2 The History of Machine Learning -- 3 Software for machine learning -- 4 Representation of data for Machine Learning in MATLAB -- 5 MATLAB Graphics -- 6 Machine Learning Examples in MATLAB -- 7 Face Recognition with Deep Learning -- 8 Data Classification -- 9 Classification of Numbers Using Neural Networks -- 10 Kalman Filters -- 11 Adaptive Control -- 12 Autonomous Driving -- Bibliography.
Record Nr. UNINA-9910157379403321
Paluszek Michael  
Berkeley, CA : , : Apress : , : Imprint : Apress, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
MATLAB Machine Learning Recipes : A Problem-Solution Approach / / by Michael Paluszek, Stephanie Thomas
MATLAB Machine Learning Recipes : A Problem-Solution Approach / / by Michael Paluszek, Stephanie Thomas
Autore Paluszek Michael
Edizione [3rd ed. 2024.]
Pubbl/distr/stampa Berkeley, CA : , : Apress : , : Imprint : Apress, , 2024
Descrizione fisica 1 online resource (458 pages)
Disciplina 006.31
Soggetto topico Artificial intelligence
Big data
Artificial Intelligence
Big Data
ISBN 1484298462
9781484298466
1484298454
9781484298459
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. An Overview of Machine Learning -- Chapter 2. Data Representation -- Chapter 3. MATLAB Graphics -- Chapter 4. Kalman Filters -- Chapter 5. Adaptive Control -- Chapter 6. Neural Aircraft Control -- Chapter 7. Fuzzy Logic -- Chapter 8. Classification with Neural Nets -- Chapter 9. Simple Neural Nets -- Chapter 10. Data Classification. - Chapter 11. Neural Nets with Deep Learning -- Chapter 12. Multiple Hypothesis Testing -- Chapter 13. Autonomous Driving with MHT -- Chapter 14. Case-Based Expert Systems -- Chapter 15. Spacecraft Attitude Determination Using Neural Nets. -Appendix A Brief History of Autonomous Learning -- Appendix B. Software for Autonomous Learning.
Record Nr. UNINA-9910842282703321
Paluszek Michael  
Berkeley, CA : , : Apress : , : Imprint : Apress, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
MATLAB Machine Learning Recipes : A Problem-Solution Approach / / by Michael Paluszek, Stephanie Thomas
MATLAB Machine Learning Recipes : A Problem-Solution Approach / / by Michael Paluszek, Stephanie Thomas
Autore Paluszek Michael
Edizione [2nd ed. 2019.]
Pubbl/distr/stampa Berkeley, CA : , : Apress : , : Imprint : Apress, , 2019
Descrizione fisica 1 online resource (358 pages)
Disciplina 006.3
Soggetto topico Artificial intelligence
Big data
Artificial Intelligence
Big Data
ISBN 1-5231-5037-8
1-4842-3916-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Overview -- 2 Data Representation -- 3 MATLAB Graphics -- 4 Kalman Filters -- 5 Adaptive Control -- 6 Fuzzy Logic -- 7 Data Classification with Decision Trees -- 8 Simple Neural Nets -- 9 Classification with Neural Nets -- 10 Neural Nets with Deep Learning -- 11 Neural Aircraft Control -- 12 Multiple Hypothesis Testing -- 13 Autonomous Driving with MHT -- 14 Case-Based Expert Systems -- Appendix A: A Brief History of Autonomous Learning -- Appendix B: Software for Machine Learning.
Record Nr. UNINA-9910338008103321
Paluszek Michael  
Berkeley, CA : , : Apress : , : Imprint : Apress, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
MATLAB recipes : a problem-solution approach / / Michael Paluszek, Stephanie Thomas
MATLAB recipes : a problem-solution approach / / Michael Paluszek, Stephanie Thomas
Autore Paluszek Michael
Edizione [Second edition.]
Pubbl/distr/stampa [Place of publication not identified] : , : Apress, , [2020]
Descrizione fisica 1 online resource (XIX, 415 p. 140 illus., 125 illus. in color.)
Disciplina 001.6420151
Soggetto topico Numerical analysis - Computer programs
ISBN 1-4842-6124-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I: Coding in MATLAB -- 1: Coding Handbook -- 2: MATLAB Style -- 3: Visualization -- 4: Interactive Graphics -- 5: Testing and Debugging -- 6: Classes -- Part II: Applications -- 7: The Double Integrator -- 8: Robotics -- 9: Electric Motors -- 10: Fault Detection -- 11: Chemical Processes -- 12: Aircraft -- 13: Spacecraft Attitude Control -- 14: Automobiles.
Record Nr. UNINA-9910440647003321
Paluszek Michael  
[Place of publication not identified] : , : Apress, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
MATLAB recipes [[electronic resource] ] : a problem-solution approach / / by Michael Paluszek, Stephanie Thomas
MATLAB recipes [[electronic resource] ] : a problem-solution approach / / by Michael Paluszek, Stephanie Thomas
Autore Paluszek Michael
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Berkeley, CA : , : Apress : , : Imprint : Apress, , 2015
Descrizione fisica 1 online resource (316 p.)
Disciplina 510
Collana Expert's Voice in MATLAB
Soggetto topico Programming languages (Electronic computers)
Computer software
Programming Languages, Compilers, Interpreters
Mathematical Software
ISBN 1-4842-0559-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I: Coding in MATLAB -- 1. Coding Basics -- 2. MATLAB Style -- 3. Visualization -- 4. Interactive Graphics -- 5. Testing and Debugging -- Part II: Applications -- 6. The Double Integrator -- 7. Robotics -- 8. Electrical Motor -- 9. Fault Detection -- 10. Chemical Processes -- 11. Aircraft -- 12. Spacecraft.-.
Record Nr. UNINA-9910300642603321
Paluszek Michael  
Berkeley, CA : , : Apress : , : Imprint : Apress, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Practical MATLAB deep learning : a projects-based approach / / Michael Paluszek, Stephanie Thomas, and Eric Ham
Practical MATLAB deep learning : a projects-based approach / / Michael Paluszek, Stephanie Thomas, and Eric Ham
Autore Paluszek Michael
Edizione [Second edition.]
Pubbl/distr/stampa New York, New York : , : Apress Media LLC, , [2022]
Descrizione fisica 1 online resource (338 pages)
Disciplina 006.31
Collana ITpro collection
Soggetto topico Machine learning
ISBN 1-4842-7912-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- About the Authors -- About the Technical Reviewer -- Acknowledgments -- Preface to the Second Edition -- 1 What Is Deep Learning? -- 1.1 Deep Learning -- 1.2 History of Deep Learning -- 1.3 Neural Nets -- 1.3.1 Daylight Detector -- Problem -- Solution -- How It Works -- 1.3.2 XOR Neural Net -- Problem -- Solution -- How It Works -- 1.4 Deep Learning and Data -- 1.5 Types of Deep Learning -- 1.5.1 Multi-layer Neural Network -- 1.5.2 Convolutional Neural Network (CNN) -- 1.5.3 Recurrent Neural Network (RNN) -- 1.5.4 Long Short-Term Memory Network (LSTM) -- 1.5.5 Recursive Neural Network -- 1.5.6 Temporal Convolutional Machine (TCM) -- 1.5.7 Stacked Autoencoders -- 1.5.8 Extreme Learning Machine (ELM) -- 1.5.9 Recursive Deep Learning -- 1.5.10 Generative Deep Learning -- 1.5.11 Reinforcement Learning -- 1.6 Applications of Deep Learning -- 1.7 Organization of the Book -- 2 MATLAB Toolboxes -- 2.1 Commercial MATLAB Software -- 2.1.1 MathWorks Products -- Deep Learning Toolbox -- Instrument Control Toolbox -- Statistics and Machine Learning Toolbox -- Computer Vision Toolbox -- Image Acquisition Toolbox -- Parallel Computing Toolbox -- Text Analytics Toolbox -- 2.2 MATLAB Open Source -- 2.3 XOR Example -- 2.4 Training -- 2.5 Zermelo's Problem -- 3 Finding Circles -- 3.1 Introduction -- 3.2 Structure -- 3.2.1 imageInputLayer -- 3.2.2 convolution2dLayer -- 3.2.3 batchNormalizationLayer -- 3.2.4 reluLayer -- 3.2.5 maxPooling2dLayer -- 3.2.6 fullyConnectedLayer -- 3.2.7 softmaxLayer -- 3.2.8 classificationLayer -- 3.2.9 Structuring the Layers -- 3.3 Generating Data -- 3.3.1 Problem -- 3.3.2 Solution -- 3.3.3 How It Works -- 3.4 Training and Testing -- 3.4.1 Problem -- 3.4.2 Solution -- 3.4.3 How It Works -- 4 Classifying Movies -- 4.1 Introduction -- 4.2 Generating a Movie Database -- 4.2.1 Problem -- 4.2.2 Solution.
4.2.3 How It Works -- 4.3 Generating a Viewer Database -- 4.3.1 Problem -- 4.3.2 Solution -- 4.3.3 How It Works -- 4.4 Training and Testing -- 4.4.1 Problem -- 4.4.2 Solution -- 4.4.3 How It Works -- 5 Algorithmic Deep Learning -- 5.1 Building the Filter -- 5.1.1 Problem -- 5.1.2 Solution -- 5.1.3 How It Works -- 5.2 Simulating -- 5.2.1 Problem -- 5.2.2 Solution -- 5.2.3 How It Works -- 5.3 Testing and Training -- 5.3.1 Problem -- 5.3.2 Solution -- 5.3.3 How It Works -- 6 Tokamak Disruption Detection -- 6.1 Introduction -- 6.2 Numerical Model -- 6.2.1 Dynamics -- 6.2.2 Sensors -- 6.2.3 Disturbances -- 6.2.4 Controller -- 6.3 Dynamical Model -- 6.3.1 Problem -- 6.3.2 Solution -- 6.3.3 How It Works -- 6.4 Simulate the Plasma -- 6.4.1 Problem -- 6.4.2 Solution -- 6.4.3 How It Works -- 6.5 Control the Plasma -- 6.5.1 Problem -- 6.5.2 Solution -- 6.5.3 How It Works -- 6.6 Training and Testing -- 6.6.1 Problem -- 6.6.2 Solution -- 6.6.3 How It Works -- 7 Classifying a Pirouette -- 7.1 Introduction -- 7.1.1 Inertial Measurement Unit -- 7.1.2 Physics -- 7.2 Data Acquisition -- 7.2.1 Problem -- 7.2.2 Solution -- 7.2.3 How It Works -- 7.3 Orientation -- 7.3.1 Problem -- 7.3.2 Solution -- 7.3.3 How It Works -- 7.4 Dancer Simulation -- 7.4.1 Problem -- 7.4.2 Solution -- 7.4.3 How It Works -- 7.5 Real-Time Plotting -- 7.5.1 Problem -- 7.5.2 Solution -- 7.5.3 How It Works -- 7.6 Quaternion Display -- 7.6.1 Problem -- 7.6.2 Solution -- 7.6.3 How It Works -- 7.7 Making the IMU Belt -- 7.7.1 Problem -- 7.7.2 Solution -- 7.7.3 How It Works -- 7.8 Testing the System -- 7.8.1 Problem -- 7.8.2 Solution -- 7.8.3 How It Works -- 7.9 Classifying the Pirouette -- 7.9.1 Problem -- 7.9.2 Solution -- 7.9.3 How It Works -- 7.10 Data Acquisition GUI -- 7.10.1 Problem -- 7.10.2 Solution -- 7.10.3 How It Works -- 7.11 Hardware Sources -- 8 Completing Sentences -- 8.1 Introduction.
8.1.1 Sentence Completion -- 8.1.2 Grammar -- 8.1.3 Sentence Completion by Pattern Recognition -- 8.1.4 Sentence Generation -- 8.2 Generating a Database -- 8.2.1 Problem -- 8.2.2 Solution -- 8.2.3 How It Works -- 8.3 Creating a Numeric Dictionary -- 8.3.1 Problem -- 8.3.2 Solution -- 8.3.3 How It Works -- 8.4 Mapping Sentences to Numbers -- 8.4.1 Problem -- 8.4.2 Solution -- 8.4.3 How It Works -- 8.5 Converting the Sentences -- 8.5.1 Problem -- 8.5.2 Solution -- 8.5.3 How It Works -- 8.6 Training and Testing -- 8.6.1 Problem -- 8.6.2 Solution -- 8.6.3 How It Works -- 9 Terrain-Based Navigation -- 9.1 Introduction -- 9.2 Modeling Our Aircraft -- 9.2.1 Problem -- 9.2.2 Solution -- 9.2.3 How It Works -- 9.3 Generating Terrain -- 9.3.1 Problem -- 9.3.2 Solution -- 9.3.3 How It Works -- 9.4 Close-Up Terrain -- 9.4.1 Problem -- 9.4.2 Solution -- 9.4.3 How It Works -- 9.5 Building the Camera Model -- 9.5.1 Problem -- 9.5.2 Solution -- 9.5.3 How It Works -- 9.6 Plotting the Trajectory -- 9.6.1 Problem -- 9.6.2 Solution -- 9.6.3 How It Works -- 9.7 Creating the Training Images -- 9.7.1 Problem -- 9.7.2 Solution -- 9.7.3 How It Works -- 9.8 Training and Testing -- 9.8.1 Problem -- 9.8.2 Solution -- 9.8.3 How It Works -- 9.9 Simulation -- 9.9.1 Problem -- 9.9.2 Solution -- 9.9.3 How It Works -- 10 Stock Prediction -- 10.1 Introduction -- 10.2 Generating a Stock Market -- 10.2.1 Problem -- 10.2.2 Solution -- 10.2.3 How It Works -- 10.3 Creating a Stock Market -- 10.3.1 Problem -- 10.3.2 Solution -- 10.3.3 How It Works -- 10.4 Training and Testing -- 10.4.1 Problem -- 10.4.2 Solution -- 10.4.3 How It Works -- 11 Image Classification -- 11.1 Introduction -- 11.2 Using AlexNet -- 11.2.1 Problem -- 11.2.2 Solution -- 11.2.3 How It Works -- 11.3 Using GoogLeNet -- 11.3.1 Problem -- 11.3.2 Solution -- 11.3.3 How It Works -- 12 Orbit Determination -- 12.1 Introduction.
12.2 Generating the Orbits -- 12.2.1 Problem -- 12.2.2 Solution -- 12.2.3 How It Works -- 12.3 Training and Testing -- 12.3.1 Problem -- 12.3.2 Solution -- 12.3.3 How It Works -- 12.4 Implementing an LSTM -- 12.4.1 Problem -- 12.4.2 Solution -- 12.4.3 How It Works -- 13 Earth Sensors -- 13.1 Introduction -- 13.2 Linear Output Earth Sensor -- 13.2.1 Problem -- 13.2.2 Solution -- 13.2.3 How It Works -- 13.3 Segmented Earth Sensor -- 13.3.1 Problem -- 13.3.2 Solution -- 13.3.3 How It Works -- 13.4 Linear Output Sensor Neural Network -- 13.4.1 Problem -- 13.4.2 Solution -- 13.4.3 How It Works -- 13.5 Segmented Sensor Neural Network -- 13.5.1 Problem -- 13.5.2 Solution -- 13.5.3 How It Works -- 14 Generative Modeling of Music -- 14.1 Introduction -- 14.2 Generative Modeling Description -- 14.3 Problem: Music Generation -- 14.4 Solution -- 14.5 Implementation -- 14.6 Alternative Methods -- 15 Reinforcement Learning -- 15.1 Introduction -- 15.2 Titan Lander -- 15.3 Titan Atmosphere -- 15.3.1 Problem -- 15.3.2 Solution -- 15.3.3 How It Works -- 15.4 Simulating the Aircraft -- 15.4.1 Problem -- 15.4.2 Solution -- 15.4.3 How It Works -- 15.5 Simulating Level Flight -- 15.5.1 Problem -- 15.5.2 Solution -- 15.5.3 How It Works -- 15.6 Optimal Trajectory -- 15.6.1 Problem -- 15.6.2 Solution -- 15.6.3 How It Works -- 15.7 Reinforcement Example -- 15.7.1 Problem -- 15.7.2 Solution -- 15.7.3 How It Works -- Bibliography -- Index.
Record Nr. UNINA-9910592983203321
Paluszek Michael  
New York, New York : , : Apress Media LLC, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Practical MATLAB Deep Learning : A Project-Based Approach / / by Michael Paluszek, Stephanie Thomas
Practical MATLAB Deep Learning : A Project-Based Approach / / by Michael Paluszek, Stephanie Thomas
Autore Paluszek Michael
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Berkeley, CA : , : Apress : , : Imprint : Apress, , 2020
Descrizione fisica 1 online resource (XV, 252 p. 111 illus., 100 illus. in color.)
Disciplina 005.13
Soggetto topico Programming languages (Electronic computers)
Artificial intelligence
Computer input-output equipment
Computer science—Mathematics
Computer programming
Programming Languages, Compilers, Interpreters
Artificial Intelligence
Hardware and Maker
Mathematics of Computing
Programming Techniques
ISBN 1-4842-5124-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 What is Deep Learning? -- 2 MATLAB Machine and Deep Learning Toolboxes -- 3 Finding Circles with Deep Learning -- 4 Classifying Movies -- 5 Algorithmic Deep Learning -- 6 Tokamak Disruption Detection -- 7 Classifying a Pirouette -- 8 Completing Sentences -- 9 Terrain Based Navigation -- 10 Stock Prediction -- 11 Image Classification -- 12 Orbit Determination.
Record Nr. UNINA-9910380733303321
Paluszek Michael  
Berkeley, CA : , : Apress : , : Imprint : Apress, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui