Automatic control systems : with MATLAB / / S. Palani
| Automatic control systems : with MATLAB / / S. Palani |
| Autore | Palani S. |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (xix, 908 pages) : illustrations (some color) |
| Disciplina | 629.8 |
| Soggetto topico |
Automatic control - Mathematical models
Control theory |
| ISBN |
9783030934453
9783030934446 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Contents -- About the Author -- 1 Control Systems Modelling and Their Representation -- 1.1 Introduction -- 1.2 Basic Concepts and Terminologies -- 1.2.1 System -- 1.2.2 Control System -- 1.2.3 Variables -- 1.2.4 Input -- 1.2.5 Output -- 1.2.6 System Parameters -- 1.2.7 Plant or Process -- 1.2.8 Automation -- 1.2.9 Servomechanism -- 1.2.10 Regulator System -- 1.3 Concept of Feedback-Open Loop and Closed Loop Systems -- 1.3.1 Open Loop System -- 1.3.2 Closed Loop or Feedback System -- 1.4 Comparison of Open Loop and Closed Loop Systems -- 1.4.1 Open Loop Systems -- 1.4.2 Closed Loop System -- 1.4.3 Effects of Feedback -- 1.5 Examples of Closed Loop System -- 1.5.1 Automobile Steering Control System -- 1.5.2 Regulator System -- 1.5.3 Liquid Level System -- 1.5.4 Temperature Control System -- 1.5.5 Position Control System (Servomechanism) -- 1.5.6 Computer Controlled System -- 1.6 System Classification -- 1.7 The Concept of Transfer Function -- 1.7.1 Poles and Zeros of the Transfer Function -- 1.7.2 Complex s-Plane and the Locations of Poles and Zeros -- 1.7.3 Sinusoidal, Minimum Phase, Non-minimum Phase and All Pass Transfer Functions -- 1.8 System Representation in Simple Block Diagram -- 1.9 Transfer Function Model of Electrical Network -- 1.10 Transfer Function Model of Mechanical Systems -- 1.11 Transfer Function Model for Mechanical Translational System -- 1.12 Transfer Function Model for Mechanical Rotational System -- 1.13 Transfer Function Model of Electro-Mechanical Systems -- 1.14 Transfer Function Model of D.C. Motor -- 1.14.1 Transfer Function of Field Controlled D.C. Motor (No Load) -- 1.14.2 Transfer Function of Armature Controlled D.C. Motor -- 1.14.3 Transfer Function of D.C. Generator (On No Load) -- 1.14.4 Performance Comparison of Armature and Field Controlled D.C. Motors.
1.15 Two Phase A.C. Servomotor -- 1.16 A Pair of Synchros -- 1.16.1 Synchro Generator -- 1.16.2 Control Transformer -- 1.17 Electrical Analogy -- 1.17.1 Force-Voltage Analogy -- 1.17.2 Force-Current Analogy -- 1.18 Block Diagram Reduction Technique -- 1.18.1 Component Parts of Block Diagram -- 1.18.2 Block Diagram Reduction Rule -- 1.18.3 Block Diagram Reduction for Multiple Inputs -- 1.18.4 Signal Flow Graph -- 1.18.5 Signal Flow Graph Algebra -- 1.18.6 Definitions of SFG Terminologies -- 1.18.7 Application of the Gain Formula Between Output Nodes and Non-input Nodes -- 1.18.8 Applications of the Gain Formula to Block Diagrams -- 1.18.9 Signal Flow Graph for the Electrical Network -- 2 Time Response Analysis -- 2.1 Introduction -- 2.2 First Order Continuous Time System -- 2.2.1 System Modelling -- 2.2.2 Time Response of First Order System -- 2.2.3 Time Domain Specifications -- 2.3 Second Order System Modelling -- 2.4 Time Response of a Second Order System -- 2.4.1 Impulse Response -- 2.4.2 Step Response of a Second Order System -- 2.4.3 Time Domain Specifications of a Second Order System -- 2.5 Steady State Error -- 2.5.1 Type of the System -- 2.5.2 Steady State Error Using Static Error Constants -- 2.5.3 Steady State Error for Non-unity Feedback Systems -- 2.5.4 Steady State Error for Disturbances -- 2.5.5 The Generalized Error Constants -- 2.5.6 Steady State Error When Closed Loop T.F. is Given -- 2.6 Performance Enhancement By Using Controllers -- 2.6.1 Rate Controller or Tachometer Feedback Controller -- 2.6.2 Proportional Plus Integral Plus Derivative (Three Term Controllers) Controllers -- 2.6.3 Integral or Reset Controller -- 2.6.4 Proportional Plus Integral (PI) Controller -- 2.6.5 Proportional + Derivative (PD) Controller -- 2.6.6 Proportional + Integral + Derivative (PID) Controller -- 3 Frequency Response Analysis -- 3.1 Introduction. 3.2 Obtaining Steady State Output to Sinusoidal Input -- 3.3 Plotting Frequency Response -- 3.4 Polar Plot (Nyquist Plot) -- 3.4.1 General Shape of Polar Plot and Type and Order of the System -- 3.4.2 Polar Plot of Non-minimum Phase Transfer Function -- 3.4.3 Polar Plot with Transportation Lag (Time Delay) -- 3.4.4 Polar Plot of Prototype Second Order System -- 3.5 Correlation Between Transient Response and Frequency Response -- 3.6 Bandwidth of a Second Order System -- 3.6.1 Cut off Frequency and Cut Off Rate -- 3.7 Bode Plots -- 3.7.1 Bode Asymptotic Magnitude Plot -- 3.7.2 Bode Asymptotic Phase Angle Plots -- 3.8 Step by Step Procedure to Draw Bode Magnitude Plot -- 3.8.1 Transfer Function from Bode Plot -- 3.9 Log Magnitude Versus Phase Plot (Nichols Plot) -- 3.10 Frequency Domain Specifications -- 3.10.1 Phase Margin and Gain Margin via Nyquist (Polar) Diagram -- 3.10.2 Phase Margin and Gain Margin via Bode Plots -- 3.10.3 Phase Margin and Gain Margin Using MATLAB -- 3.10.4 Phase Margin and Gain Margin via Log-Magnitude-Phase Plot -- 3.11 Determining Closed Loop Frequency Response from Open … -- 3.11.1 Constant M Circles -- 3.11.2 Constant N Circles -- 3.11.3 The Nichols Chart -- 3.11.4 Nichols Chart from Constant M and Constant N Circles -- 4 Stability Analysis of Linear Control System -- 4.1 Introduction -- 4.2 The Concept of Stability -- 4.2.1 Asymptotic (Internal) Stability -- 4.2.2 Marginal (Neutral) Stability -- 4.2.3 Bounded Input Bounded Output (BIBO) (External) Stability -- 4.2.4 Relative Stability -- 4.2.5 BIBO Stability via Impulse Response Function -- 4.2.6 BIBO Stability and the Characteristic Roots -- 4.2.7 Relationship Between BIBO and Asymptotic Stability -- 4.3 Routh-Hurwitz Criterion -- 4.3.1 Routh-Hurwitz Criterion to Determine Absolute Stability -- 4.3.2 Routh-Hurwitz Criterion: Special Cases. 4.3.3 Parameters Estimation via Routh-Hurwitz Stability Criterion -- 4.3.4 Relative Stability Using Routh-Hurwitz Stability Criterion -- 4.3.5 Routh's Test for System with Transportation Lag -- 4.4 Nyquist Stability Criterion -- 4.4.1 Concepts Used in Nyquist Stability Criterion -- 4.4.2 The Principle of the Argument-Cauchy's Theorem -- 4.4.3 The Nyquist Stability Criterion -- 5 Root Locus Method for Analysis -- 5.1 Introduction -- 5.1.1 Advantages of Root Locus Method -- 5.2 The Concept of Root Locus -- 5.3 Properties of the Root Loci (Rules of the Root Loci) -- 5.4 Procedure to Construct Root Locus -- 6 Design of Compensators -- 6.1 Introduction -- 6.2 Performance Criteria for Compensators -- 6.3 Time and Frequency Domain Approaches -- 6.4 Compensator Design in the Frequency Domain -- 6.4.1 Design of Lead Compensator -- 6.4.2 Design Procedure for Lead Compensator in the Frequency Domain -- 6.4.3 Lag Compensator -- 6.4.4 Lag-Lead Compensator -- 6.5 Compensator Design in the Time Domain -- 6.5.1 Design of Lead Compensator Using Root Locus -- 6.5.2 Design of Lag Compensator Using Root Locus -- 6.5.3 Design of Lag-Lead Compensator Using Root Locus -- 7 State Space Modelling and Analysis -- 7.1 Introduction -- 7.2 The State of a System and State Equation of Continuous Time System -- 7.3 Vector Matrix Differential Equation of Continuous Time System -- 7.3.1 State Equations for Mechanical Systems -- 7.3.2 State Equations for Electrical Circuits -- 7.4 State Equations from Transfer Function -- 7.4.1 General Case of Representation-Phase Variable or Controllable Canonical Form -- 7.4.2 General Case of Representation-Observable Canonical Form -- 7.5 Transfer Function of Continuous Time System from State Equations -- 7.6 Solution of State Equations -- 7.6.1 Laplace Transform Solution of State Equations -- 7.6.2 Time Domain Solution to State Equations. 7.6.3 Determination of eAt-The Cayley-Hamilton Theorem -- 7.7 Controllability of Linear Continuous Time System -- 7.7.1 State Controllability Condition -- 7.7.2 Output Controllability Condition -- 7.7.3 Controllability and Observability Tests in the Frequency Domain -- 7.8 Observability of Linear Continuous Time System -- 7.8.1 Observability Condition -- 7.9 State Equation of Discrete Time System -- 7.9.1 Discrete Time State Equation in Controllable Canonical Form -- 7.9.2 Observable Canonical Form Model -- 7.9.3 Diagonal Form (Parallel Form) Model -- 7.9.4 Solution of State Equation -- 7.10 Controllability and Observability of Discrete Time System -- 7.10.1 Controllability Condition for Discrete Time System -- 7.10.2 Observability Condition for Discrete Time System -- 7.11 Sampled Data System -- 7.11.1 Introduction -- 7.11.2 Advantages of Sampled Data Control Systems -- 7.11.3 Disadvantages -- 7.11.4 A Sampled Data Closed Loop Control System -- 7.11.5 Sampling Process -- 7.11.6 Sampled Data System Variables -- 7.11.7 Hold Devices -- 7.11.8 Signal Reconstruction Using Zero Order Hold Device -- 7.11.9 Transfer Function of a ZOH -- 7.11.10 The Sampling Theorem -- 7.12 MATAB Program -- 7.12.1 Conversion of State Space Model to Transfer Function Model and Vice Versa -- 7.12.2 Conversion of Transfer Function to State Model -- 7.12.3 To Write a Program to Obtain the STM -- 7.12.4 To Determine Controllability and Observability of the System -- Index. |
| Record Nr. | UNINA-9910559396203321 |
Palani S.
|
||
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Principles of digital signal processing / / S. Palani
| Principles of digital signal processing / / S. Palani |
| Autore | Palani S. |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (689 pages) |
| Disciplina | 621.3822 |
| Soggetto topico | Signal processing - Digital techniques |
| ISBN |
9783030963224
9783030963217 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- About the Author -- 1 Representation of Discrete Signals and Systems -- 1.1 Introduction -- 1.2 Terminologies Related to Signals and Systems -- 1.2.1 Signal -- 1.2.2 System -- 1.3 Continuous and Discrete Time Signals -- 1.4 Basic Discrete Time Signals -- 1.4.1 The Unit Impulse Sequence -- 1.4.2 The Basic Unit Step Sequence -- 1.4.3 The Basic Unit Ramp Sequence -- 1.4.4 Unit Rectangular Sequence -- 1.4.5 Sinusoidal Sequence -- 1.4.6 Discrete Time Real Exponential Sequence -- 1.5 Basic Operations on Discrete Time Signals -- 1.5.1 Addition of Discrete Time Sequence -- 1.5.2 Multiplication of DT Signals -- 1.5.3 Amplitude Scaling of DT Signal -- 1.5.4 Time Scaling of DT Signal -- 1.5.5 Time Shifting of DT Signal -- 1.5.6 Multiple Transformation -- 1.6 Classification of Discrete Time Signals -- 1.6.1 Periodic and Non-periodic DT Signals -- 1.6.2 Odd and Even DT Signals -- 1.6.3 Energy and Power of DT Signals -- 1.7 Discrete Time System -- 1.8 Properties of Discrete Time System -- 1.8.1 Linear and Nonlinear Systems -- 1.8.2 Time Invariant and Time Varying DT Systems -- 1.8.3 Causal and Non-causal DT Systems -- 1.8.4 Stable and Unstable Systems -- 1.8.5 Static and Dynamic Systems -- 1.8.6 Invertible and Inverse Discrete Time Systems -- 2 Discrete and Fast Fourier Transforms (DFT and FFT) -- 2.1 Introduction -- 2.2 Discrete Fourier Transform (DFT) -- 2.2.1 The Discrete Fourier Transform Pairs -- 2.2.2 Four-Point, Six-Point and Eight-Point Twiddle Factors -- 2.2.3 Zero Padding -- 2.3 Relationship of the DFT to Other Transforms -- 2.3.1 Relationship to the Fourier Series Coefficients of a Periodic Sequence -- 2.3.2 Relationship to the Fourier Transform of an Aperiodic Sequence -- 2.3.3 Relationship to the z-Transform -- 2.4 Properties of DFT -- 2.4.1 Periodicity.
2.4.2 Linearity -- 2.4.3 Circular Shift and Circular Symmetric of a Sequence -- 2.4.4 Symmetry Properties of the DFT -- 2.4.5 Multiplication of Two DFTs and Circular Convolution -- 2.4.6 Time Reversal of a Sequence -- 2.4.7 Circular Time Shift of a Sequence -- 2.4.8 Circular Frequency Shift -- 2.4.9 Complex-Conjugate Properties -- 2.4.10 Circular Correlation -- 2.4.11 Multiplication of Two Sequences -- 2.4.12 Parseval's Theorem -- 2.5 Circular Convolution -- 2.5.1 Method of Performing Circular Convolution -- 2.5.2 Performing Linear Convolution Using DFT -- 2.6 Fast Fourier Transform (FFT) -- 2.6.1 Radix-2 FFT Algorithm -- 2.6.2 Radix-4 FFT Algorithms -- 2.6.3 Computation of IDFT through FFT -- 2.6.4 Use of the FFT Algorithm in Linear Filtering and Correlation -- 2.7 In-Plane Computation -- 3 Design of IIR Digital Filters -- 3.1 Introduction -- 3.1.1 Advantages -- 3.1.2 Disadvantages -- 3.2 IIR and FIR Filters -- 3.3 Basic Features of IIR Filters -- 3.4 Performance Specifications -- 3.5 Impulse Invariance Transform Method -- 3.5.1 Relation Between Analog and Digital Filter Poles -- 3.5.2 Relation Between Analog and Digital Frequency -- 3.6 Bilinear Transformation Method -- 3.6.1 Relation Between Analog and Digital Filter Poles -- 3.6.2 Relation Between Analog and Digital Frequency -- 3.6.3 Effect of Warping on the Magnitude Response -- 3.6.4 Effect of Warping on the Phase Response -- 3.7 Specifications of the Lowpass Filter -- 3.8 Design of Lowpass Digital Butterworth Filter -- 3.8.1 Analog Butterworth Filter -- 3.8.2 Frequency Response of Butterworth Filter -- 3.8.3 Properties of Butterworth Filters -- 3.8.4 Design Procedure for Lowpass Digital Butterworth Filters -- 3.9 Design of Lowpass Digital Chebyshev Filter -- 3.9.1 Analog Chebyshev Filter -- 3.9.2 Determination of the Order of the Chebyshev Filter. 3.9.3 Unnormalized Chebyshev Lowpass Filter Transfer Function -- 3.9.4 Frequency Response of Chebyshev Filter -- 3.9.5 Properties of Chebyshev Filter (Type I) -- 3.9.6 Design Procedures for Lowpass Digital Chebyshev IIR Filter -- 3.10 Frequency Transformation -- 3.10.1 Analog Frequency Transformation -- 3.10.2 Digital Frequency Transformation -- 3.11 IIR Filter Design by Approximation of Derivatives -- 3.12 Frequency Response from Transfer Function H(z) -- 3.13 Structure Realization of IIR System -- 3.13.1 Direct Form-I Structure -- 3.13.2 Direct Form-II Structure -- 3.13.3 Cascade Form Realization -- 3.13.4 Parallel Form Realization -- 3.13.5 Transposed Direct Form Realization -- 3.13.6 Transposition Theorem and Transposed Structure -- 3.13.7 Lattice Structure of IIR System -- 3.13.8 Conversion from Direct Form to Lattice Structure -- 3.13.9 Lattice-Ladder Structure -- 4 Finite Impulse Response (FIR) Filter Design -- 4.1 Introduction -- 4.1.1 LTI System as Frequency Selective Filters -- 4.2 Characteristic of Practical Frequency Selective Filters -- 4.3 Structures for Realization of the FIR Filter -- 4.3.1 Direct Form Realization -- 4.3.2 Cascade Form Realization -- 4.3.3 Linear Phase Realization -- 4.3.4 Lattice Structure of an FIR Filter -- 4.4 FIR Filters -- 4.4.1 Characteristics of FIR Filters with Linear Phase -- 4.4.2 Frequency Response of Linear Phase FIR Filter -- 4.5 Design Techniques for Linear Phase FIR Filters -- 4.5.1 Fourier Series Method of FIR Filter Design -- 4.5.2 Window Method -- 4.5.3 Frequency Sampling Method -- 5 Finite Word Length Effects -- 5.1 Introduction -- 5.2 Representation of Numbers in Digital System -- 5.2.1 Fixed Point Representation -- 5.2.2 Floating Point Representation -- 5.3 Methods of Quantization -- 5.3.1 Truncation -- 5.3.2 Rounding -- 5.4 Quantization of Input Data by Analog to Digital Converter. 5.4.1 Output Noise Power Due to the Quantization Error Signal -- 5.5 Quantization of Filter Coefficients -- 5.6 Product Quantization Error -- 5.7 Limit Cycles in Recursive System -- 5.7.1 Zero-Input Limit Cycles -- 5.7.2 Overflow Limit Cycle Oscillation -- 5.8 Scaling to Prevent Overflow -- 6 Multi-rate Digital Signal Processing -- 6.1 Introduction -- 6.2 Advantages and Applications of Multi-rate Signal Processing -- 6.3 Downsampling (Decimator) -- 6.4 Upsampling (Interpolator) -- 6.5 Sampling Rate Conversion by Non-integer Factors Represented by Rational Number -- 6.6 Characteristics of Filter and Downsampler -- 6.7 Linearity and Time Invariancy of Decimator and Interpolator -- 6.7.1 Linearity of Decimator -- 6.7.2 Linearity of an Interpolator -- 6.7.3 Time Invariancy of a Decimator -- 6.7.4 Time Invariancy of an Interpolator -- 6.8 Spectrum of Downsampled Signal -- 6.9 Effect of Aliasing in Downsampling -- 6.10 Spectrum of Upsampling Signal -- 6.10.1 Anti-imaging Filter -- 6.11 Efficient Transversal Structure for Decimator -- 6.12 Efficient Transversal Structure for Interpolator -- 6.13 Identities -- 6.14 Polyphase Filter Structure of a Decimator -- 6.14.1 The Polyphase Decomposition -- 6.14.2 Polyphase Structure of a Decimator Using z-Transform -- 6.14.3 Polyphase Structure of an Interpolator -- 6.14.4 Polyphase Structure of an Interpolator Using z-Transform -- 6.15 Polyphase Decomposition of IIR Transfer Function -- 6.16 Cascading of Upsampler and Downsampler -- 6.17 Multi-stage Rating of Sampling Rate Conversion -- 6.18 Implementation of Narrow Band Lowpass Filter -- 6.19 Adaptive Filters -- 6.19.1 Concepts of Adaptive Filtering -- 6.19.2 Adaptive Noise Canceller -- 6.19.3 Main Components of the Adaptive Filter -- 6.19.4 Adaptive Algorithms -- Index. |
| Record Nr. | UNINA-9910592993003321 |
Palani S.
|
||
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||