Circle-valued Morse theory [[electronic resource] /] / Andrei V. Pajitnov
| Circle-valued Morse theory [[electronic resource] /] / Andrei V. Pajitnov |
| Autore | Pajitnov Andrei V |
| Pubbl/distr/stampa | Berlin ; ; New York, : De Gruyter, c2006 |
| Descrizione fisica | 1 online resource (464 pages) |
| Disciplina | 514/.74 |
| Collana | De Gruyter studies in mathematics |
| Soggetto topico |
Morse theory
Manifolds (Mathematics) |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-282-19426-7
9786612194269 3-11-019797-9 |
| Classificazione | SK 350 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- Contents -- Preface -- Introduction -- Part 1. Morse functions and vector fields on manifolds -- CHAPTER 1. Vector fields and C0 topology -- CHAPTER 2. Morse functions and their gradients -- CHAPTER 3. Gradient flows of real-valued Morse functions -- Part 2. Transversality, handles, Morse complexes -- CHAPTER 4. The Kupka-Smale transversality theory for gradient flows -- CHAPTER 5. Handles -- CHAPTER 6. The Morse complex of a Morse function -- Part 3. Cellular gradients -- CHAPTER 7. Condition (C) -- CHAPTER 8. Cellular gradients are C0-generic -- CHAPTER 9. Properties of cellular gradients -- Part 4. Circle-valued Morse maps and Novikov complexes -- CHAPTER 10. Completions of rings, modules and complexes -- CHAPTER 11. The Novikov complex of a circle-valued Morse map -- CHAPTER 12. Cellular gradients of circle-valued Morse functions and the Rationality Theorem -- CHAPTER 13. Counting closed orbits of the gradient flow -- CHAPTER 14. Selected topics in the Morse-Novikov theory -- Backmatter |
| Record Nr. | UNINA-9910454619003321 |
Pajitnov Andrei V
|
||
| Berlin ; ; New York, : De Gruyter, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Circle-valued Morse theory [[electronic resource] /] / Andrei V. Pajitnov
| Circle-valued Morse theory [[electronic resource] /] / Andrei V. Pajitnov |
| Autore | Pajitnov Andrei V |
| Pubbl/distr/stampa | Berlin ; ; New York, : De Gruyter, c2006 |
| Descrizione fisica | 1 online resource (464 pages) |
| Disciplina | 514/.74 |
| Collana | De Gruyter studies in mathematics |
| Soggetto topico |
Morse theory
Manifolds (Mathematics) |
| Soggetto non controllato |
Differential geometry
Morse theory |
| ISBN |
1-282-19426-7
9786612194269 3-11-019797-9 |
| Classificazione | SK 350 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- Contents -- Preface -- Introduction -- Part 1. Morse functions and vector fields on manifolds -- CHAPTER 1. Vector fields and C0 topology -- CHAPTER 2. Morse functions and their gradients -- CHAPTER 3. Gradient flows of real-valued Morse functions -- Part 2. Transversality, handles, Morse complexes -- CHAPTER 4. The Kupka-Smale transversality theory for gradient flows -- CHAPTER 5. Handles -- CHAPTER 6. The Morse complex of a Morse function -- Part 3. Cellular gradients -- CHAPTER 7. Condition (C) -- CHAPTER 8. Cellular gradients are C0-generic -- CHAPTER 9. Properties of cellular gradients -- Part 4. Circle-valued Morse maps and Novikov complexes -- CHAPTER 10. Completions of rings, modules and complexes -- CHAPTER 11. The Novikov complex of a circle-valued Morse map -- CHAPTER 12. Cellular gradients of circle-valued Morse functions and the Rationality Theorem -- CHAPTER 13. Counting closed orbits of the gradient flow -- CHAPTER 14. Selected topics in the Morse-Novikov theory -- Backmatter |
| Record Nr. | UNINA-9910782523503321 |
Pajitnov Andrei V
|
||
| Berlin ; ; New York, : De Gruyter, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||