top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Magnetic memory technology : spin-transfer-torque MRAM and beyond / / Denny D. Tang, Chi-Feng Pai
Magnetic memory technology : spin-transfer-torque MRAM and beyond / / Denny D. Tang, Chi-Feng Pai
Autore Tang Denny D.
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-IEEE Press, , [2021]
Descrizione fisica 1 PDF
Disciplina 621.3973
Soggetto topico Magnetic memory (Computers)
Nonvolatile random-access memory
ISBN 1-119-56222-8
1-119-56226-0
1-119-56228-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Basic electromagnetism (25 pages) -- 1.1 Introduction -- 1.2 Magnetic force, pole, field, dipole -- 1.3 Magnetic dipole moment, torque and energy -- 1.4 Magnetic flux and magnetic induction -- 1.5 Ampere's circuital law, Biot-Savart law and magnetic field from magnetic material -- 1.5.1 Ampere's Law -- 1.5.2 Biot=Savart's Law -- 1.5.3 Magnetic field from magnetic material -- 1.6 Equations, cgs-SI unit conversion tables -- -- 2 Magnetism and magnetic materials (51 pages) -- 2.1 Introduction -- 2.2 Origin of magnetization -- 2.2.1 From Ampère to Einstein -- 2.2.2 Precession -- 2.2.3 Electron spin -- 2.2.4 Spin-orbit interaction -- 2.2.5 Hund's rules -- 2.3 Classification of magnetisms -- 2.3.1 Diamagnetism -- 2.3.2 Paramagnetism -- 2.3.3 Ferromagnetism -- 2.3.4 Antiferromagnetism -- 2.3.5 Ferrimagnetism -- 2.4 Exchange interactions -- 2.4.1 Direct exchange -- 2.4.2 Indirect exchange: Superexchange -- 2.4.3 Indirect exchange: RKKY interaction -- 2.5 Magnetization in magnetic metals and oxides -- 2.5.1 Slater-Pauling curve -- 2.5.2 Rigid band model -- 2.5.3 Iron oxides and iron garnets -- 2.6 Phenomenology of magnetic anisotropy -- 2.6.1 Uniaxial anisotropy -- 2.6.2 Cubic anisotropy -- 2.7 2Origins of magnetic anisotropy -- 2.7.1 Shape anisotropy -- 2.7.2 Magnetocrystalline anisotropy (MCA) -- 2.7.3 Perpendicular magnetic anisotropy (PMA) -- 2.8 Magnetic domain and domain walls -- 2.8.1 Domain wall -- 2.8.2 Single domain and superparamagnetism -- -- 3 Magnetic thin films -- 3.1 Introduction -- 3.2 Magnetic thin film growth -- 3.2.1 Sputter deposition -- 3.2.2 Molecular beam epitaxy (MBE) -- 3.3 Magnetic thin film characterization -- 3.3.1 Vibrating-sample magnetometer (VSM) -- 3.3.2 Magneto-optical Kerr effect (MOKE) -- -- 4 Magnetoresistance effects (14 pages) -- 4.1 Introduction -- 4.2 Anisotropic magnetoresistance (AMR) -- 4.3 Giant magnetoresistance (GMR) -- 4.4 Tunneling magnetoresistance (TMR) and magnetic tunnel junction (MTJ).
4.5 Contemporary MTJ designs and characterization -- -- 5 Magnetization switching and Field MRAMs (12 pages text + Figs) -- -- 5.1 Introduction -- 5.2 Magnetization reversible rotation and irreversible switching under external field -- 5.2.1 Full film and patterned device -- [homework] -- 5.2.2 Magnetization rotation and switching under a field in easy axis direction -- 5.2.3 Magnetization rotation and switching Under two orthogonal applied fields -- 5.2.4 Magnetization behavior of a Synthetic Anti-Ferromagnetic (SAF) stack -- 5.3 Field MRAMs -- 5.3.1 MTJ of Field MRAM -- 5.3.2 Half select bit disturbance issue -- 5.4 Applications -- references -- -- 6 Spin current and spin dynamics (17 pages) -- 6.1 Introduction to Hall effects -- 6.1.1 Ordinary Hall effect -- 6.1.2 Anomalous Hall effect and spin Hall effect -- 6.2 Spin current -- 6.2.1 Electro spin polarization in NM/FM/NM film stack -- 6.2.2 Non-local spin valve: Spin current injection, diffusion and inverse spin Hall effect -- 6.2.3 Generalized carrier and spin current draft-diffusion equation -- 6.3 Spin dynamics -- 6.3.1 Landau-Lifshitz and Landau-Lifshitz-Gilbert dynamics equation of motion -- 6.3.2 Ferromagnetic resonance -- 6.3.3 Spin pumping and effective damping in FM/NM film stack -- 6.3.4 FM/NM/FM coupling through spin current -- 6.4 Interaction between polarized conduction electron and local magnetization -- 6.4.1 Electron spin torque transfer to local magnetization -- 6.4.2 Macrospin model -- 6.4.3 Spin torque transfer in spin valve -- 6.4.3.1 Switching threshold current density -- 6.4.3.2 Switching time -- 6.4.4 Spin-torque transfer in magnetic tunnel junction -- 6.4.5 Spin-torque ferromagnetic resonance and torkance -- 6.5 Spin current interaction with domain wall -- 6.5.1 LLG description of domain wall motion under spin current -- 6.5.2 Threshold current density -- -- 7 Spin-torque-transfer (STT) MRAM engineering (46 pages) -- 7.1 Introduction.
7.2 Thermal stability energy and switching energy -- 7.3 STT switching properties -- 7.3.1 Switching probability and wrote error rate (WER) -- 7.3.2 Switching current in precession regime -- 7.3.3 Switching delay o a STT-MRAM cell -- 7.3.4 Read disturb rate -- 7.3.5 Switching under a magnetic field - phase diagram -- 7.3.6 MTJ switching abnormality -- 7.3.6.1 Magnetic back hopping -- 7.3.6.2 Bifurcation switching (Ballooning in WER) -- 7.3.6.3 Domain mediated magnetic reversal -- 7.4 The integrity of MTJ tunnel barrier -- 7.4.1 Write current stress -- 7.4.2 MgO degradation model -- 7.5 Data retention -- 7.5.1 Energy barrier extraction based on bit switching probability -- 7.5.2 Energy barrier extraction based on aiding field -- 7.5.3 Energy barrier extraction with retention bake at chip level -- 7.5.4 Data retention at chip level -- 7.6 The cell design consideration and scaling -- 7.6.1 MRAM bit cell and array -- 7.6.2 CMOS options -- 7.6.3 Cell switching efficiency -- 7.6.4 The cell design considerations -- 7.6.4.1 Write current and cell size -- 7.6.4.2 Read access performance -- 7.6.4.3 READ and WRITE margin -- 7.6.4.4 Stray field control for perpendicular MTJ -- 7.6.4.5 Suppression of stochastic switching time variation ideas -- 7.6.5 The scaling of MTJ for memory -- 7.6.5.1 In-plane MTJ -- 7.6.5.2 Out-of-plane (perpendicular) MTJ -- 7.7 MRAM cell SPICE model -- 7.7.1 Introduction -- 7.7.2 MTJ SPICE model embedded with Macrospin calculator -- 7.8 Test chip and chip level weak bit screening methodology -- 7.8.1 READ margin bits -- 7.8.2 WRITE margin bits -- 7.8.3 Weak retention bits -- 7.8.4 Low endurance bits -- -- 8 Advanced switching MRAM modes -- -- 8.1 Introduction -- 8.2 Current Induced-Domain-wall-motion (CIDM) memory -- 8.2.1 Single-bit cell -- 8.2.2 Multi-bit cell: Racetrack -- 8.3 Spin-orbit Torque (SOT) Memory -- 8.3.1 Introduction -- 8.3.2 Spin-orbit-Torque (SOT) MRAM cells -- 8.3.2.1 In-plane SOT cell.
in-plane SOT cell structure and switching behavior -- Device engineering and Cell scaling -- 8.3.2.2 Perpendicular SOT Cell -- 8.3.3 Materials choice for SOT-MRAM cell -- 8.3.3.1 Transition metals and their alloys -- 8.3.3.2 Emergent materials systems -- 8.3.3.3 Benchmarking of SOT switching efficiency -- 8.4 Magneto-electric effects and voltage-control magnetic anisotropy (VCMA) MRAM -- 8.4.1 Magneto-electric effects -- 8.4.2 VCMA-assisted MRAMS -- 8.4.2.1 VCMA-assisted Field-MRAM -- 8.4.2.2 VCMA-assisted multi-bit-word SOT-MRAM -- 8.4.2.3 VCMA-assisted Precession-toggle MRAM -- 8.5 Relative Merit of advanced switching mode MRAMs -- -- 9 MRAM applications, market position and production (31 pages) -- 9.1 Introduction -- 9.2 Intrinsic properties and product attributes of emerging non-volatile memories -- 9.2.1 Intrinsic properties -- 9.2.2 Product attributes -- 9.3 Memory landscape and MRAM opportunity -- 9.3.1 MRAM as embedded memory in logic SoC chips -- MTJ process integration issue of embedded MRAM -- MRAM as embedded FLASH in micro-controller -- embedded MRAM cell size -- MRAM as cache memory in processor -- improvement of access latency -- 9.3.2 High-density discrete MRAM -- 9.3.2.1 Technology status -- 9.3.2.2 Ideal CMOS technology for high-density MRAM -- 9.3.3 Applications and market opportunity -- 9.3.3.1 Battery-back memory applications -- 9.3.3.2 Internet -of-things (IoT), Cybersecurity applications -- 9.3.3.3 Applications to in-memory computing, artificial intelligence (AI) -- 9.3.3.4 MRAM based Memory-driven computing -- 9.4 MRAM production -- 9.4.1 MRAM product ecosystem -- 9.4.2 MRAM production history -- 9.4.2.1 1st generation MRAM - Field MRAM -- 9.4.2.2 2nd generation MRAM - STT MRAM -- 9.4.2.3 Potential 3rd generation MRAM -SOT MRAM -- Appendix -- A. Retention bake (include two-way flip) (1 pages) -- B. Memory Functionality-based scaling (10 pages) -- C. High-bandwidth MRAM architecture (6 pages).
Record Nr. UNINA-9910555253903321
Tang Denny D.  
Hoboken, New Jersey : , : Wiley-IEEE Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Magnetic memory technology : spin-transfer-torque MRAM and beyond / / Denny D. Tang, Chi-Feng Pai
Magnetic memory technology : spin-transfer-torque MRAM and beyond / / Denny D. Tang, Chi-Feng Pai
Autore Tang Denny D.
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-IEEE Press, , [2021]
Descrizione fisica 1 PDF
Disciplina 621.3973
Soggetto topico Magnetic memory (Computers)
Nonvolatile random-access memory
ISBN 1-119-56222-8
1-119-56226-0
1-119-56228-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Basic electromagnetism (25 pages) -- 1.1 Introduction -- 1.2 Magnetic force, pole, field, dipole -- 1.3 Magnetic dipole moment, torque and energy -- 1.4 Magnetic flux and magnetic induction -- 1.5 Ampere's circuital law, Biot-Savart law and magnetic field from magnetic material -- 1.5.1 Ampere's Law -- 1.5.2 Biot=Savart's Law -- 1.5.3 Magnetic field from magnetic material -- 1.6 Equations, cgs-SI unit conversion tables -- -- 2 Magnetism and magnetic materials (51 pages) -- 2.1 Introduction -- 2.2 Origin of magnetization -- 2.2.1 From Ampère to Einstein -- 2.2.2 Precession -- 2.2.3 Electron spin -- 2.2.4 Spin-orbit interaction -- 2.2.5 Hund's rules -- 2.3 Classification of magnetisms -- 2.3.1 Diamagnetism -- 2.3.2 Paramagnetism -- 2.3.3 Ferromagnetism -- 2.3.4 Antiferromagnetism -- 2.3.5 Ferrimagnetism -- 2.4 Exchange interactions -- 2.4.1 Direct exchange -- 2.4.2 Indirect exchange: Superexchange -- 2.4.3 Indirect exchange: RKKY interaction -- 2.5 Magnetization in magnetic metals and oxides -- 2.5.1 Slater-Pauling curve -- 2.5.2 Rigid band model -- 2.5.3 Iron oxides and iron garnets -- 2.6 Phenomenology of magnetic anisotropy -- 2.6.1 Uniaxial anisotropy -- 2.6.2 Cubic anisotropy -- 2.7 2Origins of magnetic anisotropy -- 2.7.1 Shape anisotropy -- 2.7.2 Magnetocrystalline anisotropy (MCA) -- 2.7.3 Perpendicular magnetic anisotropy (PMA) -- 2.8 Magnetic domain and domain walls -- 2.8.1 Domain wall -- 2.8.2 Single domain and superparamagnetism -- -- 3 Magnetic thin films -- 3.1 Introduction -- 3.2 Magnetic thin film growth -- 3.2.1 Sputter deposition -- 3.2.2 Molecular beam epitaxy (MBE) -- 3.3 Magnetic thin film characterization -- 3.3.1 Vibrating-sample magnetometer (VSM) -- 3.3.2 Magneto-optical Kerr effect (MOKE) -- -- 4 Magnetoresistance effects (14 pages) -- 4.1 Introduction -- 4.2 Anisotropic magnetoresistance (AMR) -- 4.3 Giant magnetoresistance (GMR) -- 4.4 Tunneling magnetoresistance (TMR) and magnetic tunnel junction (MTJ).
4.5 Contemporary MTJ designs and characterization -- -- 5 Magnetization switching and Field MRAMs (12 pages text + Figs) -- -- 5.1 Introduction -- 5.2 Magnetization reversible rotation and irreversible switching under external field -- 5.2.1 Full film and patterned device -- [homework] -- 5.2.2 Magnetization rotation and switching under a field in easy axis direction -- 5.2.3 Magnetization rotation and switching Under two orthogonal applied fields -- 5.2.4 Magnetization behavior of a Synthetic Anti-Ferromagnetic (SAF) stack -- 5.3 Field MRAMs -- 5.3.1 MTJ of Field MRAM -- 5.3.2 Half select bit disturbance issue -- 5.4 Applications -- references -- -- 6 Spin current and spin dynamics (17 pages) -- 6.1 Introduction to Hall effects -- 6.1.1 Ordinary Hall effect -- 6.1.2 Anomalous Hall effect and spin Hall effect -- 6.2 Spin current -- 6.2.1 Electro spin polarization in NM/FM/NM film stack -- 6.2.2 Non-local spin valve: Spin current injection, diffusion and inverse spin Hall effect -- 6.2.3 Generalized carrier and spin current draft-diffusion equation -- 6.3 Spin dynamics -- 6.3.1 Landau-Lifshitz and Landau-Lifshitz-Gilbert dynamics equation of motion -- 6.3.2 Ferromagnetic resonance -- 6.3.3 Spin pumping and effective damping in FM/NM film stack -- 6.3.4 FM/NM/FM coupling through spin current -- 6.4 Interaction between polarized conduction electron and local magnetization -- 6.4.1 Electron spin torque transfer to local magnetization -- 6.4.2 Macrospin model -- 6.4.3 Spin torque transfer in spin valve -- 6.4.3.1 Switching threshold current density -- 6.4.3.2 Switching time -- 6.4.4 Spin-torque transfer in magnetic tunnel junction -- 6.4.5 Spin-torque ferromagnetic resonance and torkance -- 6.5 Spin current interaction with domain wall -- 6.5.1 LLG description of domain wall motion under spin current -- 6.5.2 Threshold current density -- -- 7 Spin-torque-transfer (STT) MRAM engineering (46 pages) -- 7.1 Introduction.
7.2 Thermal stability energy and switching energy -- 7.3 STT switching properties -- 7.3.1 Switching probability and wrote error rate (WER) -- 7.3.2 Switching current in precession regime -- 7.3.3 Switching delay o a STT-MRAM cell -- 7.3.4 Read disturb rate -- 7.3.5 Switching under a magnetic field - phase diagram -- 7.3.6 MTJ switching abnormality -- 7.3.6.1 Magnetic back hopping -- 7.3.6.2 Bifurcation switching (Ballooning in WER) -- 7.3.6.3 Domain mediated magnetic reversal -- 7.4 The integrity of MTJ tunnel barrier -- 7.4.1 Write current stress -- 7.4.2 MgO degradation model -- 7.5 Data retention -- 7.5.1 Energy barrier extraction based on bit switching probability -- 7.5.2 Energy barrier extraction based on aiding field -- 7.5.3 Energy barrier extraction with retention bake at chip level -- 7.5.4 Data retention at chip level -- 7.6 The cell design consideration and scaling -- 7.6.1 MRAM bit cell and array -- 7.6.2 CMOS options -- 7.6.3 Cell switching efficiency -- 7.6.4 The cell design considerations -- 7.6.4.1 Write current and cell size -- 7.6.4.2 Read access performance -- 7.6.4.3 READ and WRITE margin -- 7.6.4.4 Stray field control for perpendicular MTJ -- 7.6.4.5 Suppression of stochastic switching time variation ideas -- 7.6.5 The scaling of MTJ for memory -- 7.6.5.1 In-plane MTJ -- 7.6.5.2 Out-of-plane (perpendicular) MTJ -- 7.7 MRAM cell SPICE model -- 7.7.1 Introduction -- 7.7.2 MTJ SPICE model embedded with Macrospin calculator -- 7.8 Test chip and chip level weak bit screening methodology -- 7.8.1 READ margin bits -- 7.8.2 WRITE margin bits -- 7.8.3 Weak retention bits -- 7.8.4 Low endurance bits -- -- 8 Advanced switching MRAM modes -- -- 8.1 Introduction -- 8.2 Current Induced-Domain-wall-motion (CIDM) memory -- 8.2.1 Single-bit cell -- 8.2.2 Multi-bit cell: Racetrack -- 8.3 Spin-orbit Torque (SOT) Memory -- 8.3.1 Introduction -- 8.3.2 Spin-orbit-Torque (SOT) MRAM cells -- 8.3.2.1 In-plane SOT cell.
in-plane SOT cell structure and switching behavior -- Device engineering and Cell scaling -- 8.3.2.2 Perpendicular SOT Cell -- 8.3.3 Materials choice for SOT-MRAM cell -- 8.3.3.1 Transition metals and their alloys -- 8.3.3.2 Emergent materials systems -- 8.3.3.3 Benchmarking of SOT switching efficiency -- 8.4 Magneto-electric effects and voltage-control magnetic anisotropy (VCMA) MRAM -- 8.4.1 Magneto-electric effects -- 8.4.2 VCMA-assisted MRAMS -- 8.4.2.1 VCMA-assisted Field-MRAM -- 8.4.2.2 VCMA-assisted multi-bit-word SOT-MRAM -- 8.4.2.3 VCMA-assisted Precession-toggle MRAM -- 8.5 Relative Merit of advanced switching mode MRAMs -- -- 9 MRAM applications, market position and production (31 pages) -- 9.1 Introduction -- 9.2 Intrinsic properties and product attributes of emerging non-volatile memories -- 9.2.1 Intrinsic properties -- 9.2.2 Product attributes -- 9.3 Memory landscape and MRAM opportunity -- 9.3.1 MRAM as embedded memory in logic SoC chips -- MTJ process integration issue of embedded MRAM -- MRAM as embedded FLASH in micro-controller -- embedded MRAM cell size -- MRAM as cache memory in processor -- improvement of access latency -- 9.3.2 High-density discrete MRAM -- 9.3.2.1 Technology status -- 9.3.2.2 Ideal CMOS technology for high-density MRAM -- 9.3.3 Applications and market opportunity -- 9.3.3.1 Battery-back memory applications -- 9.3.3.2 Internet -of-things (IoT), Cybersecurity applications -- 9.3.3.3 Applications to in-memory computing, artificial intelligence (AI) -- 9.3.3.4 MRAM based Memory-driven computing -- 9.4 MRAM production -- 9.4.1 MRAM product ecosystem -- 9.4.2 MRAM production history -- 9.4.2.1 1st generation MRAM - Field MRAM -- 9.4.2.2 2nd generation MRAM - STT MRAM -- 9.4.2.3 Potential 3rd generation MRAM -SOT MRAM -- Appendix -- A. Retention bake (include two-way flip) (1 pages) -- B. Memory Functionality-based scaling (10 pages) -- C. High-bandwidth MRAM architecture (6 pages).
Record Nr. UNINA-9910830138003321
Tang Denny D.  
Hoboken, New Jersey : , : Wiley-IEEE Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui