Blockchain Security in Cloud Computing [[electronic resource] /] / edited by K.M. Baalamurugan, S. Rakesh Kumar, Abhishek Kumar, Vishal Kumar, Sanjeevikumar Padmanaban
| Blockchain Security in Cloud Computing [[electronic resource] /] / edited by K.M. Baalamurugan, S. Rakesh Kumar, Abhishek Kumar, Vishal Kumar, Sanjeevikumar Padmanaban |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
| Descrizione fisica | 1 online resource (XIII, 317 p. 111 illus., 90 illus. in color.) |
| Disciplina | 621.382 |
| Collana | EAI/Springer Innovations in Communication and Computing |
| Soggetto topico |
Electrical engineering
Computational intelligence Computer security Communications Engineering, Networks Computational Intelligence Systems and Data Security Privacy |
| Soggetto genere / forma | Electronic books. |
| ISBN | 3-030-70501-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Cloud Security -- Block Chain -- Block Chain Cloud Paradigm -- Block Chain Security -- Blockchain for Cloud -- Block chain-based cloud data storage security -- Clustering using Blockchain for cloud -- Cloud Assisted Secure Health System using blockchain -- Next Generation AI&ML using Blockchain -- Cloud Key Management for Secure Connection -- Computational Efficiency of Blockchain on cloud paradigm -- Conclusion. |
| Record Nr. | UNINA-9910497110003321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Cyber Physical Energy Systems
| Cyber Physical Energy Systems |
| Autore | Sagar Shrddha |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (564 pages) |
| Disciplina | 621.31 |
| Altri autori (Persone) |
PoongodiT
DhanarajRajesh Kumar PadmanabanSanjeevikumar |
| Soggetto topico | Microgrids (Smart power grids) - Security measures |
| ISBN |
9781394173006
1394173008 9781394172986 1394172982 9781394172993 1394172990 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Cyber-Physical Systems: A Control and Energy Approach -- 1.1 Introduction -- 1.1.1 Background and Motivation -- 1.1.2 Testbeds, Revisions, and a Safety Study for Cyber-Physical Energy Systems -- 1.1.3 CPES Test Chamber -- 1.1.4 Significance and Contributions of Testbed -- 1.1.5 Testbed Setup -- 1.1.6 Illustration of Hybrid CPES Testbed Structure -- 1.2 Studies on CPES Safety -- 1.2.1 Attacks in the CPES System -- 1.2.2 Evaluation of Attack Impacts on CPES -- 1.2.3 CPES's Assault Detection Algorithms -- 1.2.4 CPES's Assault Mitigation and Defense Systems -- 1.2.5 Dangerous Imagery -- 1.2.6 Attack Database -- 1.3 Threat Evaluation -- 1.4 Theory of Cyber-Physical Systems Risk -- 1.4.1 Challenger Type -- 1.4.2 Attack Type -- 1.5 Threat Evaluation Methodology -- 1.5.1 Cyber-System Layer -- 1.5.2 Physical-System Layer -- 1.6 Experimental Setup for Cross-Layer Firmware Threats -- 1.6.1 Risk Model -- 1.6.2 Threat Evaluation -- 1.7 Conclusion -- References -- Chapter 2 Optimization Techniques for Energy Management in Microgrid -- 2.1 Introduction -- 2.1.1 Microgrid Systems -- 2.1.2 Energy Management System -- 2.1.3 Energy Management of Distribution System -- 2.1.4 Techniques to Take Into Account While Implementing the EMS -- 2.1.5 Strategies for Reducing Risk -- 2.1.6 Monitoring Power Systems -- 2.1.7 Demand Response, Price Strategy, and Demand Side Management -- 2.2 Explanation Methods for EMS -- 2.3 EQN EMS on an Arithmetic Optimization Basis -- 2.4 Heuristic-Oriented Methods to EMS Problem-Solving -- 2.5 EMS Solution Techniques Using Meta-Heuristics -- 2.6 Alternative EMS Implementation Strategies -- 2.6.1 SCADA System -- 2.7 Conclusion and Viewpoints -- References -- Chapter 3 Cyber-Physical Energy Systems for Smart Grid: Reliable Distribution -- 3.1 Introduction.
3.1.1 Need for Sustainable and Efficient Power Generation Through Smart Grid Technology and Cyber-Physical Technologies -- 3.1.2 CPES: The Integration of Physical and Digital Worlds -- 3.2 Cyber-Physical Energy Systems (CPES) -- 3.3 Forming Energy Systems -- 3.4 Energy Efficiency -- 3.4.1 CPES Usage on Smart Grids -- 3.5 Smart Grids -- 3.6 Cyber-Physical Systems -- 3.7 SG: A CPS Viewpoint -- 3.7.1 Challenges and Solutions for Coordinating Smart Grids and Cyber-Physical Systems -- 3.7.2 Techniques of Correspondence -- 3.7.3 Data Protection -- 3.7.4 Data Skill and Engineering -- 3.7.5 Distributed Computation -- 3.7.6 Distributed Intellect -- 3.7.7 Distributed Optimization -- 3.7.8 Distributed Controller -- 3.8 Upcoming Prospects and Contests -- 3.8.1 Big Data -- 3.8.2 Cloud Computing -- 3.8.3 IoT -- 3.8.4 Network Science -- 3.8.5 Regulation and Guidelines -- 3.9 Conclusion -- References -- Chapter 4 Evolution of AI in CPS: Enhancing Technical Capabilities and Human Interactions -- 4.1 Introduction to Cyber-Physical System -- 4.2 The Cyber-Physical Systems Architecture -- 4.2.1 5C Architecture or CPS -- 4.2.1.1 Connection -- 4.2.1.2 Conversion -- 4.2.1.3 Cyber -- 4.2.1.4 Knowledge -- 4.2.1.5 Configuration -- 4.3 Cyber-Physical Systems as Real-Time Applications -- 4.3.1 Robotics Distributed -- 4.3.2 Manufacturing -- 4.3.3 Distribution of Water -- 4.3.4 Smart Greenhouses -- 4.3.5 Healthcare -- 4.3.6 Transportation -- 4.4 Impact of AI on Cyber-Physical Systems -- 4.5 Policies -- 4.6 Expected Benefits and Core Promises -- 4.7 Unintended Consequences and Implications for Policy -- 4.7.1 Negative Social Impacts -- 4.7.2 Cybersecurity Risks -- 4.7.3 Impact on the Environment -- 4.7.4 Ethical Issues -- 4.7.5 Policy Implications -- 4.8 Employment and Delegation of Tasks -- 4.9 Safety, Responsibility, and Liability -- 4.10 Privacy Concerns. 4.10.1 Data Collection and Use -- 4.10.2 Data Security -- 4.10.3 Data Sharing -- 4.10.4 Bias and Discrimination -- 4.10.5 User Empowerment -- 4.11 Social Relations -- 4.11.1 Cyber-Physical Systems and Transport -- 4.11.2 Trade of Dual-Use Technology -- 4.11.3 Civil Liberties (Data Protection, Privacy, etc.) -- 4.11.4 Safety (Such as Risk Analysis, Product Safety, etc.) -- 4.11.5 Healthcare (Medical Devices, Clinical Trials, and E-Health Devices) -- 4.11.6 Energy and Environment -- 4.11.7 Horizontal Legal Issues (Cross-Committee Considerations) -- 4.12 Economic Study on CPS -- 4.12.1 Better Resource Allocation -- 4.12.2 Enhanced Marketability -- 4.12.3 Robustness and Resilience -- 4.12.4 Regulatory Compliance -- 4.12.5 Making Decisions in Real-Time -- 4.13 Case Studies -- 4.13.1 The Daily Lives of Older Persons and Disabled Individuals with CPS -- 4.13.2 CPS in Healthcare -- 4.13.3 CPS for Security and Safety -- 4.14 Conclusion -- References -- Chapter 5 IoT Technology Enables Sophisticated Energy Management in Smart Factory -- 5.1 Introduction -- 5.2 IOT Overview -- 5.2.1 The Evolution of the Internet -- 5.2.2 IoT Sensing -- 5.2.3 IOT Data Protocol and Architecture -- 5.3 IOT Enabling Technology -- 5.3.1 Application Domain -- 5.3.2 Middleware Domain -- 5.3.3 Network Domain -- 5.3.4 Object Domain -- 5.4 IOT in Energy Sector -- 5.4.1 Internet of Things and Energy Generation -- 5.5 Challenges of Applying IOT -- 5.6 Reference Architecture for IoT-Based Smart Factory -- 5.7 Characteristics of Smart Factory -- 5.8 Challenges for IoT-Based Smart Industry -- 5.9 How IoT Will Support Energy Management in Smart Factory -- 5.10 IoT Energy Management Architecture for Industrial Applications -- 5.10.1 IoT-Based Energy Management Technology -- 5.10.2 Energy Harvesting -- 5.11 Case Study: Smart Factory -- 5.11.1 Supply Side -- 5.11.2 Photovoltaic Power Generation. 5.11.3 Smart Micro-Grid -- 5.11.4 Demand Side -- 5.11.5 Virtualization -- 5.12 Conclusion -- References -- Chapter 6 IOT-Based Advanced Energy Management in Smart Factories -- 6.1 Introduction -- 6.2 Smart Factory Benefits of IOT-Based Advanced Energy Management -- 6.3 Role of IOT Technology in Energy Management -- 6.4 Developing an IOT Information Model for Energy Efficiency -- 6.5 Integrating Intelligent Energy Systems (IES) and Demand Response (DR) -- 6.6 How to Accurately Measure and Manage Your Energy Usage -- 6.7 Introduction to Energy Efficiency Measures -- 6.8 Identifying Opportunities to Reduce Energy Use -- 6.9 Monitoring and Measuring Energy Usage -- 6.10 Establishing Accounting and Incentives -- 6.11 Sustaining the Long-Term Benefits of Optimized Energy Usage -- 6.12 Role of Cyber Security When Implementing IoT-Based Advanced Energy Solutions -- 6.13 Materials Required in Smart Factories -- 6.14 Methods in IoT-Based Smart Factory Implementation -- 6.15 Steps for Developing an IoT-Based Energy Management System -- 6.15.1 Assess Current Energy Usage -- 6.15.2 Develop an Energy Conservation Plan -- 6.15.3 Implement IoT Technology -- 6.15.4 Monitor Results -- 6.16 Challenges For Adopting IoT-Based Energy Management Systems -- 6.16.1 Big Data and Analytics -- 6.16.2 Connectivity Constraints -- 6.16.3 Data Security and Privacy Issues -- 6.16.4 Device Troubleshooting -- 6.17 Recommendations for Overcoming the Challenges With Implementing IoT-Based Advanced Energy Solution -- 6.17.1 IoT-Enabled Automation -- 6.17.2 Smart Sensors -- 6.17.3 Predictive Analytics -- 6.18 Case Studies -- 6.18.1 Automated Demand Response (ADR) -- 6.18.2 Automated Maintenance -- 6.18.3 Predictive Analytics -- 6.19 Case Studies for Successful Implementation -- 6.20 Applications -- 6.21 Different Techniques for Monitoring and Control of IoT Devices. 6.22 Literature Survey -- 6.23 Conclusion -- References -- Chapter 7 Challenges in Ensuring Security for Smart Energy Management Chapter Systems Based on CPS -- 7.1 Introduction -- 7.1.1 Brief Overview of Smart Energy Management Systems and Cyber-Physical Systems -- 7.1.2 Importance of Security in CPS-Based Smart Energy Management -- 7.2 Cyber-Physical Systems and Smart Energy Management -- 7.2.1 CPS Architecture and Components -- 7.2.2 Types of CPS-Based Smart Energy Management Systems -- 7.2.3 Common Communication Protocols Used in CPS-Based Smart Energy Management -- 7.2.4 Cyber Security Threats in CPS-Based Systems -- 7.3 Security Challenges in CPS-Based Smart Energy Management -- 7.3.1 Cyber Security Threats to CPS-Based Smart Energy Management Systems -- 7.3.2 Vulnerabilities of Communication Protocols Used in Smart Energy Management -- 7.3.3 Attack Vectors for Compromising CPS-Based Smart Energy Management Systems -- 7.4 Cyber Security Standards and Guidelines for Smart Energy Management -- 7.4.1 Cyber Security Incidents in Smart Energy Management -- 7.5 Conclusion -- References -- Chapter 8 Security Challenges in CPS-Based Smart Energy Management -- 8.1 Introduction -- 8.2 CPS Architecture -- 8.3 The Driving Forces for CPS -- 8.3.1 Big Data -- 8.3.2 Cloud -- 8.3.3 Machine-to-Machine Communication and Wireless Sensor Networks -- 8.3.4 Mechatronics -- 8.3.5 Cybernetics -- 8.3.6 Systems of Systems -- 8.4 Advances in Cyber-Physical Systems -- 8.4.1 Application Domains of CPS -- 8.4.1.1 Industrial Transformation -- 8.4.1.2 Smart Grid -- 8.4.1.3 Healthcare -- 8.4.1.4 Smart Parking System -- 8.4.1.5 Household CPS -- 8.4.1.6 Aerospace -- 8.4.1.7 Agriculture -- 8.4.1.8 Construction -- 8.5 Energy Management through CPS -- 8.5.1 Energy Management of CPS for Smart Grid -- 8.5.2 Energy Management of CPS for Smart Building Structure. 8.5.3 Energy Management of CPS for Autonomous Electric Vehicles in Smart Transportation. |
| Record Nr. | UNINA-9911019870203321 |
Sagar Shrddha
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Energy Management Strategies for Multi-Vectored Energy Hubs to Achieve Low Carbon Societies
| Energy Management Strategies for Multi-Vectored Energy Hubs to Achieve Low Carbon Societies |
| Autore | Tiwari Shubham |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (347 pages) |
| Altri autori (Persone) |
SinghJai Govind
SivaramanPalanisamy SharmeelaChenniappan PachauriRupendra Kumar PadmanabanSanjeevikumar |
| ISBN | 9781394267378 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Chapter 1 Evaluation of Power/Energy System to the Modern Multi‐Vectored Energy Hubs (MV‐EHs) -- 1.1 Introduction -- 1.2 Problem Statement -- 1.3 Objective -- 1.4 Theoretical Framework -- 1.5 Evaluation Framework -- 1.5.1 Evaluation Criteria of MV‐EHs -- 1.5.2 Data Collection -- 1.6 Discussion -- 1.6.1 Regulatory and Policy Framework -- 1.6.2 Challenges and Future Trends -- 1.7 Conclusion -- References -- Chapter 2 Introduction of Transactive Energy Management in a Multi‐Energy Networked System -- 2.1 Introduction -- 2.2 Problem Statement -- 2.3 Objective -- 2.4 Conceptual Framework -- 2.5 Multi‐Energy Networked System -- 2.6 Integration of Transactive Energy Management -- 2.6.1 Objective function -- 2.6.2 Constraints -- 2.6.2.1 Power Balance Constraint -- 2.6.2.2 Power Generation Constraint -- 2.6.3 PV Constraints -- 2.6.4 Battery Storage Constraints -- 2.6.5 Market Constraints -- 2.6.6 Working Cases of Microgrids -- 2.6.6.1 First Case -- 2.6.6.2 Second Case -- 2.6.7 Benefits of Integration -- 2.6.8 Challenges of Integration -- 2.7 Discussion -- 2.7.1 Advantages -- 2.7.1.1 Enhanced Efficiency -- 2.7.1.2 Expanded Adaptability -- 2.7.1.3 Further Developed Strength -- 2.7.2 Disadvantages -- 2.7.2.1 Complex Framework Joining -- 2.7.2.2 Information About Executives and Security -- 2.7.2.3 Administrative and Market Boundaries -- 2.7.3 Challenges -- 2.7.3.1 Technical Challenges -- 2.7.3.2 Regulatory Challenges -- 2.7.4 Future Directions -- 2.7.5 Possible Improvements and Innovations in Transactive Energy Management -- 2.8 Conclusion -- References -- Chapter 3 Energy Management Strategies for Optimal Scheduling of Multi‐Energy Network Hubs -- 3.1 Introduction -- 3.1.1 Background -- 3.1.2 Related Work -- 3.2 System Architecture and Problem Formulation.
3.2.1 System Architecture -- 3.3 Problem Formulation -- 3.3.1 DSO Objective Function -- 3.3.2 EH Coordinator Objective Function -- 3.3.3 Electrical Network -- 3.3.4 Thermal Network -- 3.3.5 Supply-demand Balance in EHs -- 3.3.6 Multi‐Objective Optimization Formulation for DSO and EH Coordinator -- 3.3.7 Bargaining Game Between EHs -- 3.3.8 Economic Scheduling Model of Cooperative EHs -- 3.4 Results and Discussion -- 3.4.1 Case 1: Non‐cooperative Operation of EHs -- 3.4.2 Case 2: Cooperative Operation of EHs -- 3.5 Conclusion -- References -- Chapter 4 Impact of Hydrogen and Power‐to‐Gas Technology on MV‐EHs -- 4.1 Introduction -- 4.2 Objectives -- 4.3 Hydrogen Storage Technology -- 4.4 Power‐to‐Gas (P2G) Technologies -- 4.4.1 System Components -- 4.4.2 Integration with Power Systems -- 4.5 Role of Hydrogen in Sustainable MV‐EHs -- 4.5.1 Environmental Impact -- 4.5.2 Economic Considerations -- 4.5.3 Case Study and Examples -- 4.6 Conclusion -- References -- Chapter 5 Modeling and Analysis of MV‐EHs with Advanced Energy Storage Units -- 5.1 Introduction -- 5.2 Evolution of Energy Hubs, Their Components, Benefits, and Classification -- 5.2.1 Energy Hubs: Basic Definition and Structure -- 5.2.2 The Background of the EH Methodology -- 5.2.3 Elements of Energy Hubs -- 5.2.3.1 Adapting Converters -- 5.2.3.2 Converters for Switching -- 5.2.4 Benefits of Energy Hubs -- 5.2.4.1 Management of Incorporated Energy -- 5.2.4.2 Enhanced Effectiveness -- 5.2.4.3 Improved Adaptability -- 5.2.4.4 Savings on Costs -- 5.2.4.5 Diminished Emissions of Carbon -- 5.2.4.6 Adaptability and Dependability -- 5.2.4.7 Local Production and Storage of Energy -- 5.2.4.8 Assistance with Electric Cars (EVs) -- 5.2.4.9 Reliability in Scale -- 5.2.4.10 Information and Tracking -- 5.2.4.11 Engagement in the Energy Market -- 5.2.4.12 Support for Regulation and Policy. 5.3 Multi‐Vector Energy Hubs -- 5.3.1 Different Types of Interactions and Interdependencies Among Energy Vectors -- 5.3.2 Interdependencies Between Natural Gas and Electricity Networks -- 5.3.3 Interdependencies Between District Heat and Electricity Networks -- 5.3.4 Interdependencies Between Natural Gas, District Heating, and Electricity Networks -- 5.3.5 Advantages of MV‐EHs -- 5.3.6 Challenges in MV‐EHs -- 5.3.6.1 Technical Difficulties -- 5.3.6.2 The Financial Challenges -- 5.3.6.3 Social and Environmental Challenges -- 5.4 Role of Advanced Energy Storage Technologies in MV‐EHs -- 5.4.1 Flywheel Energy Storage -- 5.4.1.1 Significant Progress to Improve the Energy Storage Performance of Flywheels -- 5.4.1.2 Challenges in Integrating Flywheels into MV‐EHs -- 5.4.2 CAES Technology -- 5.4.2.1 Challenges Faced by Compressed Air Storage Systems in MV‐EHs -- 5.4.3 Pumped Hydro Storage (PHS) -- 5.4.4 Batteries and Electrochemical Systems for Energy Storage -- 5.4.4.1 Merits and Demerits of Battery ESSs -- 5.4.4.2 Challenges in Integrating Battery Energy Storage in MV‐EHs -- 5.4.5 Thermal Energy Storage Technology -- 5.4.6 Magnetic Energy Storage Technology -- 5.4.7 Chemical and Hydrogen Energy Storage -- 5.5 Mathematical Model of MV‐EHs -- 5.5.1 Modeling Approaches -- 5.5.1.1 Mathematical Modeling -- 5.5.1.2 Tools for Simulation -- 5.5.1.3 Hybrid Models -- 5.5.2 Analytical Techniques -- 5.5.2.1 Optimization Algorithms -- 5.5.2.2 Performance Analysis -- 5.5.2.3 Economic and Environmental Analysis -- 5.5.3 Challenges and Opportunities -- 5.5.3.1 Challenges -- 5.5.3.2 Opportunities -- 5.5.4 Policy and Incentive Design -- 5.5.4.1 Future Research Directions -- 5.6 Conclusion -- References -- Chapter 6 Market and Energy Trading Mechanism in MV‐EHs -- 6.1 Introduction to Different Market Clearing Mechanisms in MEH -- 6.2 Concepts of Market Equilibrium Models. 6.3 Mechanisms of Energy Trading in MEH -- 6.3.1 Market Structure and Participants -- 6.3.2 Spot and Futures Markets -- 6.3.3 Pricing Mechanisms and Instruments -- 6.3.4 Environmental and Regulatory Considerations -- 6.3.5 Technological Innovations and Market Integration -- 6.4 Types of Market Equilibrium in MEHs -- 6.4.1 Stable Equilibrium -- 6.4.2 Unstable Equilibrium -- 6.4.3 Dynamic Equilibrium -- 6.4.4 Partial Equilibrium -- 6.4.5 General Equilibrium -- 6.4.6 Long‐Run Equilibrium -- 6.4.7 Short‐Run Equilibrium -- 6.5 Graphical Representation of Market Equilibrium -- 6.5.1 Demand and Supply Curves -- 6.5.2 Equilibrium Point -- 6.5.3 Shifts in Curves -- 6.5.4 Surpluses and Shortages -- 6.6 Factors Affecting Market Equilibrium Models -- 6.7 Energy Market Designs -- 6.7.1 Types of Energy Markets -- 6.7.2 Market Clearing Mechanisms -- 6.7.3 Regulatory Framework -- 6.7.4 Incentives for Renewable Energy -- 6.7.5 Demand Response Programs -- 6.7.6 Integration of Distributed Energy Resources -- 6.7.7 Market Interconnections -- 6.7.8 Pricing Mechanisms -- 6.7.9 Environmental Considerations -- 6.7.10 Challenges and Barriers -- 6.7.11 Future Trends in Energy Market Design -- 6.8 Blockchain Technologies -- 6.8.1 Key Components of Blockchain Technology -- 6.8.1.1 Blocks -- 6.8.1.2 Chain -- 6.8.1.3 Nodes -- 6.8.1.4 Consensus Mechanisms -- 6.8.1.5 Cryptographic Hash Functions -- 6.8.1.6 Smart Contracts -- 6.8.1.7 Tokens and Cryptocurrencies -- 6.8.1.8 Wallets -- 6.8.2 Types of Blockchain Technology -- 6.8.2.1 Public Blockchain -- 6.8.2.2 Private Blockchain -- 6.8.2.3 Consortium Blockchain -- 6.8.2.4 Hybrid Blockchain -- 6.8.2.5 Sidechains -- 6.8.2.6 Layer 2 Solutions -- 6.8.3 Features of Blockchain Technology -- 6.8.4 Benefits of Blockchain Technology -- 6.8.5 Challenges and Limitations of Blockchain Technology -- 6.8.6 Applications of Blockchain Technology. 6.9 Role of Market Makers in MEHs -- 6.9.1 Providing Liquidity -- 6.9.2 Reducing Bid‐Ask Spreads -- 6.9.3 Price Discovery -- 6.9.4 Stabilizing Markets -- 6.9.5 Reducing Information Asymmetry -- 6.9.6 Risk Management -- 6.9.7 Facilitating Arbitrage -- 6.10 Smart Contracts Between EHs -- 6.10.1 Role of Smart Contracts Between Energy Hubs -- 6.10.1.1 Energy Trading -- 6.10.1.2 Dynamic Pricing -- 6.10.1.3 Automated Energy Distribution -- 6.10.1.4 Microgrid Management -- 6.10.1.5 Energy Storage Management -- 6.10.1.6 Grid Balancing and Stability -- 6.10.1.7 Carbon Credits and Sustainability Incentives -- 6.10.1.8 Grid Services (Demand Response) -- 6.10.1.9 Dispute Resolution -- 6.10.2 Benefits of Smart Contracts in Energy Hubs -- 6.11 Algorithms for Energy Trading Among EHs -- 6.11.1 Market‐Based Algorithms -- 6.11.1.1 Auction Mechanisms -- 6.11.2 Game Theory Approaches -- 6.11.2.1 Nash Equilibrium -- 6.11.2.2 Cooperative Game Theory -- 6.11.3 Optimization Algorithms -- 6.11.3.1 Linear Programming (LP) -- 6.11.3.2 Mixed‐Integer Programming (MIP) -- 6.11.3.3 Dynamic Programming -- 6.11.4 Machine Learning Techniques -- 6.11.4.1 Reinforcement Learning (RL) -- 6.11.4.2 Neural Networks -- 6.11.5 Multiagent Systems -- 6.11.5.1 Distributed Algorithms -- 6.11.5.2 Consensus Algorithms -- 6.11.6 Forecasting Models -- 6.11.6.1 Time Series Analysis -- 6.11.6.2 Weather Forecasting Models -- 6.11.7 Blockchain and Smart Contracts -- 6.11.7.1 Decentralized Trading Platforms -- 6.11.8 Heuristic Methods -- 6.11.8.1 Genetic Algorithms -- 6.11.8.2 Particle Swarm Optimization -- 6.12 Regulatory Framework for MEHs -- 6.12.1 Market Structure and Design -- 6.12.2 Price Formation Mechanisms -- 6.12.3 Transparency and Reporting -- 6.12.4 Market Power and Competition -- 6.12.5 Consumer Protection -- 6.12.6 Environmental and Sustainability Standards. 6.12.7 Grid Reliability and Security. |
| Record Nr. | UNINA-9911038526103321 |
Tiwari Shubham
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Hybrid Intelligent Approaches for Smart Energy : Practical Applications
| Hybrid Intelligent Approaches for Smart Energy : Practical Applications |
| Autore | Mohan Senthil Kumar |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
| Descrizione fisica | 1 online resource (339 pages) |
| Altri autori (Persone) |
AJohn
PadmanabanSanjeevikumar HamidYasir |
| Collana | Next Generation Computing and Communication Engineering Ser. |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-119-82187-8
1-119-82186-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910595596403321 |
Mohan Senthil Kumar
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Intelligent Control of Medium and High Power Converters
| Intelligent Control of Medium and High Power Converters |
| Autore | Bendaoud Mohamed |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Stevenage : , : Institution of Engineering & Technology, , 2023 |
| Descrizione fisica | 1 online resource (185 pages) |
| Disciplina | 621.3126 |
| Altri autori (Persone) |
MalehYassine
PadmanabanSanjeevikumar |
| Collana | Energy Engineering Series |
| Soggetto topico | Electric current converters |
| ISBN |
1-83724-438-3
1-5231-5541-8 1-83953-741-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Title -- Copyright -- Contents -- About the editors -- Preface -- 1 Power electronics converters-an overview -- 1.1 Introduction -- 1.2 DC-DC converters -- 1.2.1 Non-isolated DC-DC converters -- 1.2.2 Isolated DC-DC converters -- 1.2.3 Resonant converters -- 1.3 DC-AC converters -- 1.3.1 Two-level single-phase and three-phase inverters -- 1.3.2 Classification of two-level three-phase inverters -- 1.3.3 Multilevel inverters -- 1.3.4 Review of a novel proposed MLIs -- 1.4 Conclusion -- References -- 2 Sliding mode control of bidirectional DC-DC converter for EVs -- 2.1 Introduction -- 2.2 Sliding mode control of bidirectional DC-DC converter -- 2.2.1 Modeling of the converter -- 2.2.2 Choice of sliding surface -- 2.2.3 Derivation of control law -- 2.2.4 Derivation of existence and stability conditions -- 2.2.5 Sliding mode parameter selection using HHO algorithm -- 2.3 Simulation and experimental verifications -- 2.4 Conclusion -- References -- 3 High-gain DC-DC converter with extremum seeking control for PV application -- 3.1 Introduction -- 3.2 System description -- 3.2.1 Photovoltaic array -- 3.2.2 Suggested high-gain DC-DC converter -- 3.3 Proposed AESC technique -- 3.3.1 Line search-based optimization methods -- 3.3.2 Control scheme -- 3.3.3 Extremum seeking control approach -- 3.3.4 Convergence analysis of the AESC approach -- 3.4 Simulation and comparison results -- 3.4.1 Scenario 1 -- 3.4.2 Scenario 2 -- 3.5 Conclusion -- References -- 4 A control scheme to optimize efficiency of GaN-based DC-DC converters -- 4.1 Introduction -- 4.2 Proposed control scheme -- 4.3 Simulation and experimental verification -- 4.4 Conclusions -- References -- 5 Control design of grid-connected three-phase inverters -- 5.1 Introduction -- 5.2 Inverter topologies -- 5.2.1 Grid forming inverters -- 5.2.2 Grid following inverters -- 5.3 Control strategies.
5.3.1 Control architecture of GFL inverters -- 5.3.2 PLL -- 5.3.3 Power controller -- 5.3.4 Current controller -- 5.4 Results and discussion -- 5.4.1 Real-time co-simulation testbed -- 5.4.2 Power hardware-in-loop testbed -- 5.5 Conclusion -- References -- 6 Sliding mode control of a three-phase inverter -- 6.1 Introduction -- 6.2 Modeling description and control of the inverter -- 6.2.1 Mathematical model of the DC/AC converter -- 6.2.2 Proposed SMA -- 6.3 SMA for performance improvement of WPS fed by VSI -- 6.3.1 Modeling description of the WECS -- 6.3.2 SMA of the rectifier and MPP tracking approach -- 6.4 Simulation and evaluation of performance -- 6.5 Conclusions -- References -- 7 Sliding-mode control of a three-level NPC grid-connected inverter -- 7.1 Introduction -- 7.2 Three-phase grid-connected NPC inverter -- 7.3 Reaching law in SMC -- 7.3.1 Sliding surface design -- 7.4 Super twisting SMC -- 7.4.1 Control design -- 7.4.2 Stability of the super twisting SMC -- 7.5 Results and discussion -- 7.6 Conclusion -- References -- 8 Neuro control of grid-connected three-phase inverters -- 8.1 Introduction -- 8.2 System description -- 8.3 Control design -- 8.3.1 Neural network approximation -- 8.3.2 Neuro sliding mode control design -- 8.4 Simulation results -- 8.5 Conclusion -- References -- 9 Low switching frequency operation of multilevel converters for high-power applications -- 9.1 Introduction -- 9.2 Selective harmonic minimization problem formulation -- 9.3 Solving techniques -- 9.3.1 Numerical techniques -- 9.3.2 Algebraic methods -- 9.3.3 Intelligent algorithms -- 9.4 Results and discussion -- 9.5 Comparative analysis -- 9.6 Conclusion and future work -- References -- 10 Comparison and overview of power converter control methods -- 10.1 Introduction -- 10.2 Nonlinear controllers for power converters -- 10.2.1 Sliding mode. 10.2.2 Model predictive control -- 10.3 Intelligent controllers for power converter -- 10.3.1 Fuzzy logic controller (FLC) -- 10.3.2 Artificial neural network -- 10.3.3 Metaheuristic optimization -- 10.4 Comparative performance analysis -- 10.5 Conclusion -- References -- Index. |
| Record Nr. | UNINA-9911007123803321 |
Bendaoud Mohamed
|
||
| Stevenage : , : Institution of Engineering & Technology, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Microgrids for Commercial Systems
| Microgrids for Commercial Systems |
| Autore | Palanisamy Sivaraman |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (479 pages) |
| Disciplina | 621.31 |
| Altri autori (Persone) |
ChenniappanSharmeela
PadmanabanSanjeevikumar |
| Soggetto topico |
Microgrids (Smart power grids)
Renewable energy sources |
| ISBN |
9781394167302
139416730X 9781394167319 1394167318 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Acknowledgements -- Chapter 1 Smart Energy Source Management in a Commercial Building Microgrid -- 1.1 Introduction -- 1.2 Motivations of the Study -- 1.3 State of the Art of the System -- 1.4 Overview of the Proposed Methodology -- 1.5 DSM Approach -- 1.6 Background for HOMER Simulation -- 1.6.1 Economical Input Data for Simulation -- 1.6.2 Simulation-Energy Configurations -- 1.6.3 Comparative Analysis -- 1.6.4 Highlights of the Proposed Framework -- 1.7 Conclusion -- References -- Chapter 2 Renewable Power Generation Price Prediction and Forecasting Using Machine Learning -- 2.1 Introduction -- 2.1.1 Electricity Price Forecasting -- 2.1.2 Electricity Price Classification -- 2.1.3 Price Spike Prediction -- 2.2 Literature Review -- 2.2.1 Types of Analyses -- 2.2.1.1 Game Theory Models -- 2.2.1.2 Model Simulations -- 2.2.1.3 Models for Time Series -- 2.2.1.4 Parsimonious Stochastic Models -- 2.2.1.5 Regression or Causal Models -- 2.3 Data Mining Models -- 2.3.1 Machine Learning Techniques -- 2.3.1.1 Supervised Learning -- 2.3.2 Decision Trees -- 2.4 Objectives -- 2.4.1 Forecasting Results for the Seasons of Indian Market -- 2.4.2 Day-Ahead Forecasting of Prices for the Indian Market -- 2.4.2.1 Forecasts of Cases A and B -- 2.5 Conclusions -- References -- Chapter 3 Energy Storage System for Microgrid for Commercial Systems -- 3.1 Introduction -- 3.2 State of the Art -- 3.2.1 History of Energy Storage Systems -- 3.2.2 Significance of Power Electronics-Based Systems in Energy Storage -- 3.2.3 Recent Developments in Storage Systems for Microgrids -- 3.3 Energy Storage Systems -- 3.3.1 Definition and Classification -- 3.3.2 Sizing of Primary Storage -- 3.3.3 Supplementary Storage -- 3.3.4 Control Strategies -- 3.4 Batteries for Microgrids in Commercial Applications -- 3.4.1 Battery Chemistry.
3.4.2 Modeling and Simulation of Batteries -- 3.4.3 Battery Management System -- 3.5 Future Trends -- 3.5.1 Energy Storage System Challenges -- 3.5.2 Technological Advancements -- 3.6 Summary -- References -- Chapter 4 Emerging Topologies of DC-DC Converters for Microgrid Applications -- 4.1 Introduction -- 4.2 Microgrid -- 4.3 DC-DC Converter Topologies -- 4.4 Modulation of DC-DC Converters With Different Control Strategies -- 4.5 Comparative Analysis -- 4.6 Conclusion -- Appendix -- References -- Chapter 5 Analysis of PWM Techniques on Multiphase Multilevel Inverter for PV Applications in Microgrids -- 5.1 Introduction -- 5.2 Cascaded H-Bridge Multiphase Multilevel Inverter -- 5.3 Modulation Techniques for Multilevel Inverter -- 5.3.1 High Switching Frequency PWM Technique -- 5.3.1.1 Phase-Shifted Modulation (PSM) -- 5.3.1.2 Level-Shifted Modulation (LS-PWM) -- 5.3.2 Sinusoidal PWM -- 5.3.3 Harmonic Injection -- 5.3.4 Switching Frequency Optimal -- 5.4 Simulation Results -- 5.5 Conclusion -- References -- Chapter 6 Mathematical Modeling and Analysis of Solar PV-Electrolyzer-Fuel Cell-Based Power Generation System -- 6.1 Introduction -- 6.2 Hybrid Renewable Energy Storage System -- 6.3 Modeling of the Hybrid Renewable Energy Storage System -- 6.3.1 PV Panels -- 6.3.2 PEM Electrolyzer -- 6.3.3 Hydrogen Storage Tank -- 6.3.4 PEM Fuel Cell -- 6.4 Characteristic Study of Each Component of the Hybrid Renewable Energy Storage System -- 6.4.1 Solar PV Panel -- 6.4.2 PEM Electrolyzer -- 6.4.3 PEM Fuel Cell -- 6.5 Energy Management System -- 6.6 Result and Discussion -- 6.7 Summary and Future Scope -- References -- Chapter 7 Design of DC EV Charging Infrastructure in a Commercial Building Using the Solar PV System -- 7.1 Introduction -- 7.2 Methodological Analysis -- 7.2.1 System Configuration -- 7.2.2 Site Location in Environmental Aspects. 7.2.3 Electrical Load Parameters -- 7.2.4 Component Specification Parameters -- 7.3 Result Analysis -- 7.3.1 Proposed System Cost Benefits -- 7.3.2 Electrical Analysis -- 7.3.3 Grid and Solar PV Comparison -- 7.3.4 Grid Bill Comparison -- 7.3.5 Electric Vehicle State of Charge Analysis -- 7.3.6 Emission Analysis -- 7.4 Conclusion -- References -- Chapter 8 Design and Simulation of a Rooftop Stand-Alone Photovoltaic Power System for an Academic Institution -- 8.1 Introduction -- 8.2 System Design -- 8.2.1 Size of the PV Module -- 8.2.2 Battery Sizing -- 8.2.3 Charge Controller -- 8.2.4 Inverter Sizing -- 8.3 Design Methodology -- 8.3.1 Meteorological Information of the Site -- 8.3.2 Daily Load Calculation -- 8.3.3 Cost Analysis -- 8.4 Conclusion -- References -- Chapter 9 Integration of Wind Energy Control with Electric Vehicle -- 9.1 Introduction -- 9.2 PID Controller -- 9.2.1 Proportional Action -- 9.2.2 Integral Action -- 9.2.3 Derivative Action -- 9.2.4 PID Controller Design and Tuning -- 9.2.5 PID Controller Design -- 9.3 Wind Power System Dynamics -- 9.3.1 Wind Turbine Characteristics -- 9.3.2 Wind Power Output Fluctuations -- 9.3.3 Frequency Deviation in Wind Power Systems -- 9.4 PID Control in Frequency Regulation -- 9.4.1 PID Control for Output Power Control -- 9.4.2 PID Controller Parameters and Tuning -- 9.4.3 Optimization of PID Parameter -- 9.4.4 Frequency Deviation With and Without PID Control -- 9.5 Integrating Wind Power Systems into EV -- 9.6 Conclusion -- References -- Chapter 10 Interactive Use of D-STATCOM and Storage Resource to Maintain Microgrid Stability for Commercial Systems -- 10.1 Introduction -- 10.1.1 Microgrid Concept -- 10.1.2 Review of Past Works -- 10.2 The Proposed Structure -- 10.2.1 Primary Controller -- 10.2.1.1 Drop Controller -- 10.2.1.2 Voltage Controller -- 10.2.1.3 Current Controller. 10.2.2 Secondary Control -- 10.2.2.1 Static Compensation of Microgrid Based on Inverter -- 10.3 Simulation -- 10.3.1 Commercial LV Distribution Network -- 10.3.2 Test No. 1: Changing the State of the Microgrid from Connected to Island -- 10.3.3 Test No. 2: Adding Demand to the Microgrid -- 10.3.4 Test No. 3: Changes in the Production of Renewable Resources -- 10.4 Conclusion -- References -- Chapter 11 Power System Studies for Microgrids -- 11.1 Introduction -- 11.2 Description of a Microgrid Model Operating in Islanded Mode -- 11.2.1 Load Flow Analysis of a Microgrid Operating in Islanded Mode -- 11.2.1.1 Operating Scenario 1 -- 11.2.1.2 Operating Scenario 2 -- 11.3 Harmonic Load Flow Analysis in Islanded Mode -- 11.4 Transient Analysis of a Microgrid System in Islanded Mode -- 11.4.1 Fault at Main Bus -- 11.4.2 Three-Phase Fault at Main Bus -- 11.4.3 Fault at Bus 3 Connected to Motor Load -- 11.4.4 Loss of One PV Generator in Islanded Mode Operation -- 11.4.5 Critical Clearing Time and Critical Clearing Angle -- 11.5 Load Flow Analysis of a Microgrid Operating in Grid-Tied Mode -- 11.5.1 Operating Scenario 1 -- 11.5.2 Operating Scenario 2 -- 11.5.3 Harmonic Load Flow Analysis in Grid-Tied Mode -- 11.6 Transient Analysis of Microgrid System in Grid-Tied Mode -- 11.6.1 Fault at the Main Bus -- 11.6.2 Three-Phase Fault at the Main Bus -- 11.6.3 Fault at Bus 3 Connected to 3-HP Motor Load -- 11.6.4 Loss of One PV Generator in Grid-Tied Mode Operation -- 11.7 Comparative Analysis of a Microgrid Operating in Islanded and Grid-Tied Mode -- 11.8 Conclusion -- References -- Chapter 12 EV Charging Infrastructure in Microgrid -- 12.1 Introduction -- 12.2 An Overview of EV Charging Infrastructure -- 12.2.1 Charging of Electric Vehicle -- 12.2.2 Electrical Vehicle Charging Categorization -- 12.2.3 Characteristics of Electric Vehicle Supply Equipment. 12.2.4 Smart Charging and Interoperability of Charging -- 12.2.5 Battery Specification in Different EV Segments -- 12.3 Importance of Charging Station and Charge Point -- 12.3.1 Classification of EV Charging Infrastructure -- 12.3.2 Operating Groups for EV Charging Infrastructure -- 12.3.3 Charge Point Operator and E-Mobility Service Providers -- 12.3.4 Availability and Management of Charging Data -- 12.4 EV Integration to the Microgrid -- 12.4.1 EV Charge Connection's Regulatory Framework -- 12.4.2 Electricity Tariff -- 12.4.3 Technical Challenges for DISCOMs -- 12.4.4 Electrical Supply Arrangement for Charging -- 12.5 Industrial Microgrid and Subsystem -- 12.5.1 V2G Frequency Control Method -- 12.5.2 The DC MG Structure -- 12.5.3 EV Charging Optimal Control Strategy -- 12.6 Summary -- References -- Chapter 13 Operation and Control of EV Infrastructure for Microgrid -- 13.1 Introduction -- 13.2 Proposed Electric Vehicle Charging Infrastructure for Enhancing Microgrid Operation -- 13.3 Implementation of Proposed Commercial EV Charging Stations on Microgrids -- 13.4 Validation of the Proposed Commercial EV Charging Stations on Microgrids -- 13.5 Conclusion -- References -- Chapter 14 Renewable-Energy-Powered EV Charging Station for Microgrid PSO.Based Controller for PV-Powered EV Charging Station -- 14.1 Introduction -- 14.2 Renewable-Energy-Powered EV Charging Station for Microgrid -- 14.3 EV Charging Station -- 14.3.1 Types of EV Charging Station -- 14.3.2 Types of EV Charging Cables -- 14.3.3 Types of EV Charging Modes -- 14.3.4 Types of EV Charger -- 14.4 System Description -- 14.5 Proposed PSO Optimized IC MPPT Algorithm -- 14.5.1 IC MPPT -- 14.5.2 PSO -- 14.5.3 PSO Optimized IC MPPT -- 14.6 Case Study.MATLAB Simulation -- 14.7 Conclusion -- References -- Appendix -- 14.A1 PSO-Optimized MPPT Codings -- 14.A2 Overall System in MATLAB/Simulink. Chapter 15 Closed-Loop Control of Microgrids With Wind and Battery Storage System in Islanding Mode. |
| Record Nr. | UNINA-9911020466403321 |
Palanisamy Sivaraman
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Power Electronics for Green Energy Conversion
| Power Electronics for Green Energy Conversion |
| Autore | Bhaskar Mahajan Sagar |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
| Descrizione fisica | 1 online resource (632 pages) |
| Altri autori (Persone) |
GuptaNikita
PadmanabanSanjeevikumar Holm-NielsenJens Bo SubramaniamUmashankar |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-119-78651-7
1-119-78650-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910585798903321 |
Bhaskar Mahajan Sagar
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||