Blockchain Security in Cloud Computing [[electronic resource] /] / edited by K.M. Baalamurugan, S. Rakesh Kumar, Abhishek Kumar, Vishal Kumar, Sanjeevikumar Padmanaban |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
Descrizione fisica | 1 online resource (XIII, 317 p. 111 illus., 90 illus. in color.) |
Disciplina | 621.382 |
Collana | EAI/Springer Innovations in Communication and Computing |
Soggetto topico |
Electrical engineering
Computational intelligence Computer security Communications Engineering, Networks Computational Intelligence Systems and Data Security Privacy |
Soggetto genere / forma | Electronic books. |
ISBN | 3-030-70501-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Cloud Security -- Block Chain -- Block Chain Cloud Paradigm -- Block Chain Security -- Blockchain for Cloud -- Block chain-based cloud data storage security -- Clustering using Blockchain for cloud -- Cloud Assisted Secure Health System using blockchain -- Next Generation AI&ML using Blockchain -- Cloud Key Management for Secure Connection -- Computational Efficiency of Blockchain on cloud paradigm -- Conclusion. |
Record Nr. | UNINA-9910497110003321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Cyber Physical Energy Systems |
Autore | Sagar Shrddha |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
Descrizione fisica | 1 online resource (564 pages) |
Altri autori (Persone) |
PoongodiT
DhanarajRajesh Kumar PadmanabanSanjeevikumar |
ISBN |
9781394173006
1394173008 9781394172986 1394172982 9781394172993 1394172990 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Cyber-Physical Systems: A Control and Energy Approach -- 1.1 Introduction -- 1.1.1 Background and Motivation -- 1.1.2 Testbeds, Revisions, and a Safety Study for Cyber-Physical Energy Systems -- 1.1.3 CPES Test Chamber -- 1.1.4 Significance and Contributions of Testbed -- 1.1.5 Testbed Setup -- 1.1.6 Illustration of Hybrid CPES Testbed Structure -- 1.2 Studies on CPES Safety -- 1.2.1 Attacks in the CPES System -- 1.2.2 Evaluation of Attack Impacts on CPES -- 1.2.3 CPES's Assault Detection Algorithms -- 1.2.4 CPES's Assault Mitigation and Defense Systems -- 1.2.5 Dangerous Imagery -- 1.2.6 Attack Database -- 1.3 Threat Evaluation -- 1.4 Theory of Cyber-Physical Systems Risk -- 1.4.1 Challenger Type -- 1.4.2 Attack Type -- 1.5 Threat Evaluation Methodology -- 1.5.1 Cyber-System Layer -- 1.5.2 Physical-System Layer -- 1.6 Experimental Setup for Cross-Layer Firmware Threats -- 1.6.1 Risk Model -- 1.6.2 Threat Evaluation -- 1.7 Conclusion -- References -- Chapter 2 Optimization Techniques for Energy Management in Microgrid -- 2.1 Introduction -- 2.1.1 Microgrid Systems -- 2.1.2 Energy Management System -- 2.1.3 Energy Management of Distribution System -- 2.1.4 Techniques to Take Into Account While Implementing the EMS -- 2.1.5 Strategies for Reducing Risk -- 2.1.6 Monitoring Power Systems -- 2.1.7 Demand Response, Price Strategy, and Demand Side Management -- 2.2 Explanation Methods for EMS -- 2.3 EQN EMS on an Arithmetic Optimization Basis -- 2.4 Heuristic-Oriented Methods to EMS Problem-Solving -- 2.5 EMS Solution Techniques Using Meta-Heuristics -- 2.6 Alternative EMS Implementation Strategies -- 2.6.1 SCADA System -- 2.7 Conclusion and Viewpoints -- References -- Chapter 3 Cyber-Physical Energy Systems for Smart Grid: Reliable Distribution -- 3.1 Introduction.
3.1.1 Need for Sustainable and Efficient Power Generation Through Smart Grid Technology and Cyber-Physical Technologies -- 3.1.2 CPES: The Integration of Physical and Digital Worlds -- 3.2 Cyber-Physical Energy Systems (CPES) -- 3.3 Forming Energy Systems -- 3.4 Energy Efficiency -- 3.4.1 CPES Usage on Smart Grids -- 3.5 Smart Grids -- 3.6 Cyber-Physical Systems -- 3.7 SG: A CPS Viewpoint -- 3.7.1 Challenges and Solutions for Coordinating Smart Grids and Cyber-Physical Systems -- 3.7.2 Techniques of Correspondence -- 3.7.3 Data Protection -- 3.7.4 Data Skill and Engineering -- 3.7.5 Distributed Computation -- 3.7.6 Distributed Intellect -- 3.7.7 Distributed Optimization -- 3.7.8 Distributed Controller -- 3.8 Upcoming Prospects and Contests -- 3.8.1 Big Data -- 3.8.2 Cloud Computing -- 3.8.3 IoT -- 3.8.4 Network Science -- 3.8.5 Regulation and Guidelines -- 3.9 Conclusion -- References -- Chapter 4 Evolution of AI in CPS: Enhancing Technical Capabilities and Human Interactions -- 4.1 Introduction to Cyber-Physical System -- 4.2 The Cyber-Physical Systems Architecture -- 4.2.1 5C Architecture or CPS -- 4.2.1.1 Connection -- 4.2.1.2 Conversion -- 4.2.1.3 Cyber -- 4.2.1.4 Knowledge -- 4.2.1.5 Configuration -- 4.3 Cyber-Physical Systems as Real-Time Applications -- 4.3.1 Robotics Distributed -- 4.3.2 Manufacturing -- 4.3.3 Distribution of Water -- 4.3.4 Smart Greenhouses -- 4.3.5 Healthcare -- 4.3.6 Transportation -- 4.4 Impact of AI on Cyber-Physical Systems -- 4.5 Policies -- 4.6 Expected Benefits and Core Promises -- 4.7 Unintended Consequences and Implications for Policy -- 4.7.1 Negative Social Impacts -- 4.7.2 Cybersecurity Risks -- 4.7.3 Impact on the Environment -- 4.7.4 Ethical Issues -- 4.7.5 Policy Implications -- 4.8 Employment and Delegation of Tasks -- 4.9 Safety, Responsibility, and Liability -- 4.10 Privacy Concerns. 4.10.1 Data Collection and Use -- 4.10.2 Data Security -- 4.10.3 Data Sharing -- 4.10.4 Bias and Discrimination -- 4.10.5 User Empowerment -- 4.11 Social Relations -- 4.11.1 Cyber-Physical Systems and Transport -- 4.11.2 Trade of Dual-Use Technology -- 4.11.3 Civil Liberties (Data Protection, Privacy, etc.) -- 4.11.4 Safety (Such as Risk Analysis, Product Safety, etc.) -- 4.11.5 Healthcare (Medical Devices, Clinical Trials, and E-Health Devices) -- 4.11.6 Energy and Environment -- 4.11.7 Horizontal Legal Issues (Cross-Committee Considerations) -- 4.12 Economic Study on CPS -- 4.12.1 Better Resource Allocation -- 4.12.2 Enhanced Marketability -- 4.12.3 Robustness and Resilience -- 4.12.4 Regulatory Compliance -- 4.12.5 Making Decisions in Real-Time -- 4.13 Case Studies -- 4.13.1 The Daily Lives of Older Persons and Disabled Individuals with CPS -- 4.13.2 CPS in Healthcare -- 4.13.3 CPS for Security and Safety -- 4.14 Conclusion -- References -- Chapter 5 IoT Technology Enables Sophisticated Energy Management in Smart Factory -- 5.1 Introduction -- 5.2 IOT Overview -- 5.2.1 The Evolution of the Internet -- 5.2.2 IoT Sensing -- 5.2.3 IOT Data Protocol and Architecture -- 5.3 IOT Enabling Technology -- 5.3.1 Application Domain -- 5.3.2 Middleware Domain -- 5.3.3 Network Domain -- 5.3.4 Object Domain -- 5.4 IOT in Energy Sector -- 5.4.1 Internet of Things and Energy Generation -- 5.5 Challenges of Applying IOT -- 5.6 Reference Architecture for IoT-Based Smart Factory -- 5.7 Characteristics of Smart Factory -- 5.8 Challenges for IoT-Based Smart Industry -- 5.9 How IoT Will Support Energy Management in Smart Factory -- 5.10 IoT Energy Management Architecture for Industrial Applications -- 5.10.1 IoT-Based Energy Management Technology -- 5.10.2 Energy Harvesting -- 5.11 Case Study: Smart Factory -- 5.11.1 Supply Side -- 5.11.2 Photovoltaic Power Generation. 5.11.3 Smart Micro-Grid -- 5.11.4 Demand Side -- 5.11.5 Virtualization -- 5.12 Conclusion -- References -- Chapter 6 IOT-Based Advanced Energy Management in Smart Factories -- 6.1 Introduction -- 6.2 Smart Factory Benefits of IOT-Based Advanced Energy Management -- 6.3 Role of IOT Technology in Energy Management -- 6.4 Developing an IOT Information Model for Energy Efficiency -- 6.5 Integrating Intelligent Energy Systems (IES) and Demand Response (DR) -- 6.6 How to Accurately Measure and Manage Your Energy Usage -- 6.7 Introduction to Energy Efficiency Measures -- 6.8 Identifying Opportunities to Reduce Energy Use -- 6.9 Monitoring and Measuring Energy Usage -- 6.10 Establishing Accounting and Incentives -- 6.11 Sustaining the Long-Term Benefits of Optimized Energy Usage -- 6.12 Role of Cyber Security When Implementing IoT-Based Advanced Energy Solutions -- 6.13 Materials Required in Smart Factories -- 6.14 Methods in IoT-Based Smart Factory Implementation -- 6.15 Steps for Developing an IoT-Based Energy Management System -- 6.15.1 Assess Current Energy Usage -- 6.15.2 Develop an Energy Conservation Plan -- 6.15.3 Implement IoT Technology -- 6.15.4 Monitor Results -- 6.16 Challenges For Adopting IoT-Based Energy Management Systems -- 6.16.1 Big Data and Analytics -- 6.16.2 Connectivity Constraints -- 6.16.3 Data Security and Privacy Issues -- 6.16.4 Device Troubleshooting -- 6.17 Recommendations for Overcoming the Challenges With Implementing IoT-Based Advanced Energy Solution -- 6.17.1 IoT-Enabled Automation -- 6.17.2 Smart Sensors -- 6.17.3 Predictive Analytics -- 6.18 Case Studies -- 6.18.1 Automated Demand Response (ADR) -- 6.18.2 Automated Maintenance -- 6.18.3 Predictive Analytics -- 6.19 Case Studies for Successful Implementation -- 6.20 Applications -- 6.21 Different Techniques for Monitoring and Control of IoT Devices. 6.22 Literature Survey -- 6.23 Conclusion -- References -- Chapter 7 Challenges in Ensuring Security for Smart Energy Management Chapter Systems Based on CPS -- 7.1 Introduction -- 7.1.1 Brief Overview of Smart Energy Management Systems and Cyber-Physical Systems -- 7.1.2 Importance of Security in CPS-Based Smart Energy Management -- 7.2 Cyber-Physical Systems and Smart Energy Management -- 7.2.1 CPS Architecture and Components -- 7.2.2 Types of CPS-Based Smart Energy Management Systems -- 7.2.3 Common Communication Protocols Used in CPS-Based Smart Energy Management -- 7.2.4 Cyber Security Threats in CPS-Based Systems -- 7.3 Security Challenges in CPS-Based Smart Energy Management -- 7.3.1 Cyber Security Threats to CPS-Based Smart Energy Management Systems -- 7.3.2 Vulnerabilities of Communication Protocols Used in Smart Energy Management -- 7.3.3 Attack Vectors for Compromising CPS-Based Smart Energy Management Systems -- 7.4 Cyber Security Standards and Guidelines for Smart Energy Management -- 7.4.1 Cyber Security Incidents in Smart Energy Management -- 7.5 Conclusion -- References -- Chapter 8 Security Challenges in CPS-Based Smart Energy Management -- 8.1 Introduction -- 8.2 CPS Architecture -- 8.3 The Driving Forces for CPS -- 8.3.1 Big Data -- 8.3.2 Cloud -- 8.3.3 Machine-to-Machine Communication and Wireless Sensor Networks -- 8.3.4 Mechatronics -- 8.3.5 Cybernetics -- 8.3.6 Systems of Systems -- 8.4 Advances in Cyber-Physical Systems -- 8.4.1 Application Domains of CPS -- 8.4.1.1 Industrial Transformation -- 8.4.1.2 Smart Grid -- 8.4.1.3 Healthcare -- 8.4.1.4 Smart Parking System -- 8.4.1.5 Household CPS -- 8.4.1.6 Aerospace -- 8.4.1.7 Agriculture -- 8.4.1.8 Construction -- 8.5 Energy Management through CPS -- 8.5.1 Energy Management of CPS for Smart Grid -- 8.5.2 Energy Management of CPS for Smart Building Structure. 8.5.3 Energy Management of CPS for Autonomous Electric Vehicles in Smart Transportation. |
Record Nr. | UNINA-9910911295103321 |
Sagar Shrddha | ||
Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Hybrid Intelligent Approaches for Smart Energy : Practical Applications |
Autore | Mohan Senthil Kumar |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
Descrizione fisica | 1 online resource (339 pages) |
Altri autori (Persone) |
AJohn
PadmanabanSanjeevikumar HamidYasir |
Collana | Next Generation Computing and Communication Engineering Ser. |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-82187-8
1-119-82186-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910595596403321 |
Mohan Senthil Kumar | ||
Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Microgrids for Commercial Systems |
Autore | Palanisamy Sivaraman |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (479 pages) |
Altri autori (Persone) |
ChenniappanSharmeela
PadmanabanSanjeevikumar |
Soggetto topico |
Microgrids (Smart power grids)
Renewable energy sources |
ISBN |
9781394167302
139416730X 9781394167319 1394167318 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Acknowledgements -- Chapter 1 Smart Energy Source Management in a Commercial Building Microgrid -- 1.1 Introduction -- 1.2 Motivations of the Study -- 1.3 State of the Art of the System -- 1.4 Overview of the Proposed Methodology -- 1.5 DSM Approach -- 1.6 Background for HOMER Simulation -- 1.6.1 Economical Input Data for Simulation -- 1.6.2 Simulation-Energy Configurations -- 1.6.3 Comparative Analysis -- 1.6.4 Highlights of the Proposed Framework -- 1.7 Conclusion -- References -- Chapter 2 Renewable Power Generation Price Prediction and Forecasting Using Machine Learning -- 2.1 Introduction -- 2.1.1 Electricity Price Forecasting -- 2.1.2 Electricity Price Classification -- 2.1.3 Price Spike Prediction -- 2.2 Literature Review -- 2.2.1 Types of Analyses -- 2.2.1.1 Game Theory Models -- 2.2.1.2 Model Simulations -- 2.2.1.3 Models for Time Series -- 2.2.1.4 Parsimonious Stochastic Models -- 2.2.1.5 Regression or Causal Models -- 2.3 Data Mining Models -- 2.3.1 Machine Learning Techniques -- 2.3.1.1 Supervised Learning -- 2.3.2 Decision Trees -- 2.4 Objectives -- 2.4.1 Forecasting Results for the Seasons of Indian Market -- 2.4.2 Day-Ahead Forecasting of Prices for the Indian Market -- 2.4.2.1 Forecasts of Cases A and B -- 2.5 Conclusions -- References -- Chapter 3 Energy Storage System for Microgrid for Commercial Systems -- 3.1 Introduction -- 3.2 State of the Art -- 3.2.1 History of Energy Storage Systems -- 3.2.2 Significance of Power Electronics-Based Systems in Energy Storage -- 3.2.3 Recent Developments in Storage Systems for Microgrids -- 3.3 Energy Storage Systems -- 3.3.1 Definition and Classification -- 3.3.2 Sizing of Primary Storage -- 3.3.3 Supplementary Storage -- 3.3.4 Control Strategies -- 3.4 Batteries for Microgrids in Commercial Applications -- 3.4.1 Battery Chemistry.
3.4.2 Modeling and Simulation of Batteries -- 3.4.3 Battery Management System -- 3.5 Future Trends -- 3.5.1 Energy Storage System Challenges -- 3.5.2 Technological Advancements -- 3.6 Summary -- References -- Chapter 4 Emerging Topologies of DC-DC Converters for Microgrid Applications -- 4.1 Introduction -- 4.2 Microgrid -- 4.3 DC-DC Converter Topologies -- 4.4 Modulation of DC-DC Converters With Different Control Strategies -- 4.5 Comparative Analysis -- 4.6 Conclusion -- Appendix -- References -- Chapter 5 Analysis of PWM Techniques on Multiphase Multilevel Inverter for PV Applications in Microgrids -- 5.1 Introduction -- 5.2 Cascaded H-Bridge Multiphase Multilevel Inverter -- 5.3 Modulation Techniques for Multilevel Inverter -- 5.3.1 High Switching Frequency PWM Technique -- 5.3.1.1 Phase-Shifted Modulation (PSM) -- 5.3.1.2 Level-Shifted Modulation (LS-PWM) -- 5.3.2 Sinusoidal PWM -- 5.3.3 Harmonic Injection -- 5.3.4 Switching Frequency Optimal -- 5.4 Simulation Results -- 5.5 Conclusion -- References -- Chapter 6 Mathematical Modeling and Analysis of Solar PV-Electrolyzer-Fuel Cell-Based Power Generation System -- 6.1 Introduction -- 6.2 Hybrid Renewable Energy Storage System -- 6.3 Modeling of the Hybrid Renewable Energy Storage System -- 6.3.1 PV Panels -- 6.3.2 PEM Electrolyzer -- 6.3.3 Hydrogen Storage Tank -- 6.3.4 PEM Fuel Cell -- 6.4 Characteristic Study of Each Component of the Hybrid Renewable Energy Storage System -- 6.4.1 Solar PV Panel -- 6.4.2 PEM Electrolyzer -- 6.4.3 PEM Fuel Cell -- 6.5 Energy Management System -- 6.6 Result and Discussion -- 6.7 Summary and Future Scope -- References -- Chapter 7 Design of DC EV Charging Infrastructure in a Commercial Building Using the Solar PV System -- 7.1 Introduction -- 7.2 Methodological Analysis -- 7.2.1 System Configuration -- 7.2.2 Site Location in Environmental Aspects. 7.2.3 Electrical Load Parameters -- 7.2.4 Component Specification Parameters -- 7.3 Result Analysis -- 7.3.1 Proposed System Cost Benefits -- 7.3.2 Electrical Analysis -- 7.3.3 Grid and Solar PV Comparison -- 7.3.4 Grid Bill Comparison -- 7.3.5 Electric Vehicle State of Charge Analysis -- 7.3.6 Emission Analysis -- 7.4 Conclusion -- References -- Chapter 8 Design and Simulation of a Rooftop Stand-Alone Photovoltaic Power System for an Academic Institution -- 8.1 Introduction -- 8.2 System Design -- 8.2.1 Size of the PV Module -- 8.2.2 Battery Sizing -- 8.2.3 Charge Controller -- 8.2.4 Inverter Sizing -- 8.3 Design Methodology -- 8.3.1 Meteorological Information of the Site -- 8.3.2 Daily Load Calculation -- 8.3.3 Cost Analysis -- 8.4 Conclusion -- References -- Chapter 9 Integration of Wind Energy Control with Electric Vehicle -- 9.1 Introduction -- 9.2 PID Controller -- 9.2.1 Proportional Action -- 9.2.2 Integral Action -- 9.2.3 Derivative Action -- 9.2.4 PID Controller Design and Tuning -- 9.2.5 PID Controller Design -- 9.3 Wind Power System Dynamics -- 9.3.1 Wind Turbine Characteristics -- 9.3.2 Wind Power Output Fluctuations -- 9.3.3 Frequency Deviation in Wind Power Systems -- 9.4 PID Control in Frequency Regulation -- 9.4.1 PID Control for Output Power Control -- 9.4.2 PID Controller Parameters and Tuning -- 9.4.3 Optimization of PID Parameter -- 9.4.4 Frequency Deviation With and Without PID Control -- 9.5 Integrating Wind Power Systems into EV -- 9.6 Conclusion -- References -- Chapter 10 Interactive Use of D-STATCOM and Storage Resource to Maintain Microgrid Stability for Commercial Systems -- 10.1 Introduction -- 10.1.1 Microgrid Concept -- 10.1.2 Review of Past Works -- 10.2 The Proposed Structure -- 10.2.1 Primary Controller -- 10.2.1.1 Drop Controller -- 10.2.1.2 Voltage Controller -- 10.2.1.3 Current Controller. 10.2.2 Secondary Control -- 10.2.2.1 Static Compensation of Microgrid Based on Inverter -- 10.3 Simulation -- 10.3.1 Commercial LV Distribution Network -- 10.3.2 Test No. 1: Changing the State of the Microgrid from Connected to Island -- 10.3.3 Test No. 2: Adding Demand to the Microgrid -- 10.3.4 Test No. 3: Changes in the Production of Renewable Resources -- 10.4 Conclusion -- References -- Chapter 11 Power System Studies for Microgrids -- 11.1 Introduction -- 11.2 Description of a Microgrid Model Operating in Islanded Mode -- 11.2.1 Load Flow Analysis of a Microgrid Operating in Islanded Mode -- 11.2.1.1 Operating Scenario 1 -- 11.2.1.2 Operating Scenario 2 -- 11.3 Harmonic Load Flow Analysis in Islanded Mode -- 11.4 Transient Analysis of a Microgrid System in Islanded Mode -- 11.4.1 Fault at Main Bus -- 11.4.2 Three-Phase Fault at Main Bus -- 11.4.3 Fault at Bus 3 Connected to Motor Load -- 11.4.4 Loss of One PV Generator in Islanded Mode Operation -- 11.4.5 Critical Clearing Time and Critical Clearing Angle -- 11.5 Load Flow Analysis of a Microgrid Operating in Grid-Tied Mode -- 11.5.1 Operating Scenario 1 -- 11.5.2 Operating Scenario 2 -- 11.5.3 Harmonic Load Flow Analysis in Grid-Tied Mode -- 11.6 Transient Analysis of Microgrid System in Grid-Tied Mode -- 11.6.1 Fault at the Main Bus -- 11.6.2 Three-Phase Fault at the Main Bus -- 11.6.3 Fault at Bus 3 Connected to 3-HP Motor Load -- 11.6.4 Loss of One PV Generator in Grid-Tied Mode Operation -- 11.7 Comparative Analysis of a Microgrid Operating in Islanded and Grid-Tied Mode -- 11.8 Conclusion -- References -- Chapter 12 EV Charging Infrastructure in Microgrid -- 12.1 Introduction -- 12.2 An Overview of EV Charging Infrastructure -- 12.2.1 Charging of Electric Vehicle -- 12.2.2 Electrical Vehicle Charging Categorization -- 12.2.3 Characteristics of Electric Vehicle Supply Equipment. 12.2.4 Smart Charging and Interoperability of Charging -- 12.2.5 Battery Specification in Different EV Segments -- 12.3 Importance of Charging Station and Charge Point -- 12.3.1 Classification of EV Charging Infrastructure -- 12.3.2 Operating Groups for EV Charging Infrastructure -- 12.3.3 Charge Point Operator and E-Mobility Service Providers -- 12.3.4 Availability and Management of Charging Data -- 12.4 EV Integration to the Microgrid -- 12.4.1 EV Charge Connection's Regulatory Framework -- 12.4.2 Electricity Tariff -- 12.4.3 Technical Challenges for DISCOMs -- 12.4.4 Electrical Supply Arrangement for Charging -- 12.5 Industrial Microgrid and Subsystem -- 12.5.1 V2G Frequency Control Method -- 12.5.2 The DC MG Structure -- 12.5.3 EV Charging Optimal Control Strategy -- 12.6 Summary -- References -- Chapter 13 Operation and Control of EV Infrastructure for Microgrid -- 13.1 Introduction -- 13.2 Proposed Electric Vehicle Charging Infrastructure for Enhancing Microgrid Operation -- 13.3 Implementation of Proposed Commercial EV Charging Stations on Microgrids -- 13.4 Validation of the Proposed Commercial EV Charging Stations on Microgrids -- 13.5 Conclusion -- References -- Chapter 14 Renewable-Energy-Powered EV Charging Station for Microgrid PSO.Based Controller for PV-Powered EV Charging Station -- 14.1 Introduction -- 14.2 Renewable-Energy-Powered EV Charging Station for Microgrid -- 14.3 EV Charging Station -- 14.3.1 Types of EV Charging Station -- 14.3.2 Types of EV Charging Cables -- 14.3.3 Types of EV Charging Modes -- 14.3.4 Types of EV Charger -- 14.4 System Description -- 14.5 Proposed PSO Optimized IC MPPT Algorithm -- 14.5.1 IC MPPT -- 14.5.2 PSO -- 14.5.3 PSO Optimized IC MPPT -- 14.6 Case Study.MATLAB Simulation -- 14.7 Conclusion -- References -- Appendix -- 14.A1 PSO-Optimized MPPT Codings -- 14.A2 Overall System in MATLAB/Simulink. Chapter 15 Closed-Loop Control of Microgrids With Wind and Battery Storage System in Islanding Mode. |
Record Nr. | UNINA-9910878078303321 |
Palanisamy Sivaraman | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Power Electronics for Green Energy Conversion |
Autore | Bhaskar Mahajan Sagar |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
Descrizione fisica | 1 online resource (632 pages) |
Altri autori (Persone) |
GuptaNikita
PadmanabanSanjeevikumar Holm-NielsenJens Bo SubramaniamUmashankar |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-78651-7
1-119-78650-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910585798903321 |
Bhaskar Mahajan Sagar | ||
Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|