Nanomaterials and Nanotechnology in Medicine |
Autore | P. M Visakh |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
Descrizione fisica | 1 online resource (577 pages) |
Disciplina | 610.28 |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-55802-6
1-119-55804-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Nanomaterials and Nanotechnology in Medicine: Medical Applications: Challenges and Opportunities -- 1.1 Nanoneurology -- 1.2 Nanomolecular Diagnostics -- 1.3 Nanopharmaceuticals -- 1.4 Role of Nanotechnology in Biological Therapies -- 1.5 Nanomaterials for Gene Therapy -- 1.6 Nanotools for the Treatment of Ocular Diseases -- 1.7 Nanotechnology Applications in Food and Nutrition Science -- 1.8 Rubber Nanocomposites for Biomedical Applications -- References -- Chapter 2 Nanoneurology -- 2.1 Introduction and Recent Advances -- 2.2 Types of Nanomaterials -- 2.3 Nanomaterial Applications for Neurodegenerative Diseases -- 2.3.1 Alzheimer's Disease -- 2.3.2 Parkinson's Disease -- 2.4 Nanomaterial Applications for Strokes -- 2.5 Nanomaterial Applications for Spinal Cord Injuries -- 2.6 Nanomaterial Applications for Brain Tumors -- 2.7 Adverse Effects of Nanomaterials -- 2.8 Regulatory Issues -- 2.9 Conclusions -- References -- Chapter 3 Nanomolecular Diagnostics -- 3.1 Introduction -- 3.1.1 Molecular Diagnostics -- 3.1.2 Molecular Diagnostic Techniques -- 3.1.3 Molecular Diagnostics of Infectious Diseases -- 3.2 Nanodiagnostics -- 3.3 Nanoparticles for Molecular Diagnostics -- 3.3.1 Nanowires -- 3.3.2 Nanotubes -- 3.3.3 Quantum Dots -- 3.3.4 Nanopores -- 3.3.5 Nanoneedles -- 3.3.6 Nanorobots -- 3.3.7 Nanoscale Cantilevers -- 3.4 Applications of Nanoparticles for Molecular Diagnostics -- 3.4.1 Nanoparticle-Based Molecular Diagnostics for Cardiovascular Diseases -- 3.4.2 Nanoparticle-Based Molecular Diagnostics for Cancer Diagnosis -- 3.4.3 Nanoparticle-Based Molecular Diagnostics for CNS Diseases -- 3.4.4 Nanoparticle-Based Molecular Diagnostics for Infectious Diseases -- 3.5 Comparison Between Nanomaterials and Other Materials in Molecular Diagnostics.
3.6 Prospects of Nanodiagnostics -- 3.7 Regulatory Issues -- 3.8 Conclusion -- References -- Chapter 4 Nanopharmaceuticals -- 4.1 Introduction -- 4.2 Liposomes in Nanopharmaceuticals -- 4.3 Polymeric Nanoparticles in Nanopharmaceuticals -- 4.4 Solid Lipid Nanoparticles in Nanopharmaceuticals -- 4.5 Dendrimers in Nanopharmaceuticals -- 4.6 Quantum Dots in Nanopharmaceuticals -- 4.7 Regulatory Issues -- 4.8 Conclusion -- References -- Chapter 5 Role of Nanotechnology in Biological Therapies -- 5.1 Introduction -- 5.2 Biological Therapies -- 5.2.1 Immunotherapy -- 5.2.2 Gene Therapy -- 5.2.3 Targeted Therapy -- 5.3 Nanoparticles in Biological Therapies -- 5.3.1 Biocompatible Nanoparticles -- 5.3.2 Nanoparticle-Based Drug Delivery Systems -- 5.3.3 Nanoparticle-Based DNA and RNA Delivery Systems -- 5.3.4 Nanoparticle-Based Targeted Therapy -- 5.4 Application of Nanotechnology in Biological Therapies -- 5.4.1 Drug Delivery Nanosystems in Oncology -- 5.4.2 Nanoparticle-Based Targeted Radiotherapy -- 5.5 Advantages and Disadvantages of Nanoparticles in Biological Therapies -- 5.6 Conclusion -- References -- Chapter 6 Nanomaterials for Gene Therapy -- 6.1 Introduction and Recent Advances -- 6.2 Nanomaterials and their Physicochemical Properties -- 6.2.1 Size and Shape -- 6.2.2 Surface Charge -- 6.2.3 Surface-to-Volume Ratio -- 6.3 Methods of Characterizing the Physicochemical Properties of Nanomaterials -- 6.4 Target Organ Biocompatibility/Toxicity -- 6.4.1 Mechanism of Potential Cytotoxic Effects of Nanomaterials -- 6.4.2 Biological Defense System against Nanomaterial -- 6.5 Gene Delivery -- 6.5.1 Gene-delivery Vectors -- 6.5.2 Intracellular Uptake and Trafficking -- 6.5.3 Gene Regulation -- 6.6 Regulatory Issues -- References -- Chapter 7 Nanotools for the Treatment of Ocular Diseases -- 7.1 Introduction -- 7.2 Ocular Anatomy. 7.3 Physiological Barriers in the Eye -- 7.3.1 Tear Fluid (Lacrimal Fluid) -- 7.3.2 Cornea -- 7.3.3 Vitreous Humor -- 7.3.4 Blood-Retinal Barrier -- 7.4 Methods of Ocular Disease Treatment -- 7.5 Nanomedicine in Ocular Therapy -- 7.5.1 Nanoparticle-based Systems -- 7.5.2 Improving Strategies in Nanomedicine for Ocular Therapy -- 7.5.3 Contact Lenses -- 7.6 Closing Remarks -- Conflict of Interest -- References -- Chapter 8 Nanotechnology Applications in Food and Nutrition Science -- 8.1 Introduction -- 8.2 Nanostructured Delivery Systems -- 8.2.1 Nanocarriers -- 8.2.2 Colloidosomes -- 8.2.3 Cubosomes -- 8.2.4 Archaesomes -- 8.2.5 Nanocochleates -- 8.2.6 Biopolymeric Nanoparticles -- 8.2.7 Liposomes -- 8.2.8 Nanolaminate -- 8.2.9 Nanofibers -- 8.2.10 Dendrimers -- 8.2.11 Hydrogel Nanoparticles -- 8.2.12 Polymeric Nanoparticles -- 8.2.13 Carbon-based Nanocarriers -- 8.2.14 Quantum Dots -- 8.2.15 Nanoemulsions -- 8.3 Nanoparticles Based on Inorganic Materials -- 8.3.1 TiO2 and Ti-N Nanoparticles -- 8.3.2 Silica Nanoparticles -- 8.3.3 Carbon Nanotubes -- 8.4 Metal Nanoparticles -- 8.4.1 Nano Zinc Oxide -- 8.4.2 Iron Oxide Nanoparticles -- 8.4.3 Selenium Nanoparticles -- 8.5 Conclusion -- References -- Chapter 9 Rubber Nanocomposites for Biomedical Applications -- 9.1 Introduction -- 9.2 Rubbers for Biomedical Applications -- 9.2.1 Silicone Rubber -- 9.2.2 Polyurethanes -- 9.2.3 Thermoplastic Elastomers -- 9.3 Rubber-based Nanocomposites -- 9.3.1 Silicone Rubber Nanocomposites -- 9.3.2 Polyurethane Nanocomposites -- 9.3.3 Natural Rubber Nanocomposites -- 9.4 Conclusions -- References -- Chapter 10 Nanomaterials and Nanotechnology in Medicine: Materials Development: Challenges and Opportunities -- 10.1 Nanomaterials and Scaffolds for Tissue Engineering and Regenerative Medicine -- 10.2 Nanorobotics in Nanomedicine -- 10.3 Nanosensors. 10.4 Inorganic Nanoparticles for Drug-delivery Applications -- 10.5 Intelligent Nanomaterials for Medicine -- 10.5.1 Nanocomposite -- 10.5.2 In vivo tests -- 10.6 Polymer-based Nanocomposites for Biomedical Applications -- 10.7 Toxicity of Nanomaterials -- 10.8 Multifunctional Nanomaterials for Medical Applications -- 10.9 Antimicrobial Applications of Nanoparticles -- References -- Chapter 11 Nanomaterials and Scaffolds for Tissue Engineering and Regenerative Medicine -- 11.1 Introduction and Recent Advances -- 11.2 Tissue Engineering and Regenerative Medicine: General Concepts -- 11.3 Implantable Nanomaterials to Regenerate Living Tissues -- 11.4 Nanomaterials as Carriers for Therapeutic Agents -- 11.5 Nanofibrous Scaffolds -- 11.6 Nano-topography Techniques for Tissue-engineered Scaffolds -- 11.7 Regulatory Issues -- 11.8 Conclusion -- References -- Chapter 12 Nanorobotics in Nanomedicine -- 12.1 Introduction -- 12.2 What is Nanorobotics? -- 12.3 Nanorobotics in Nanomedicines -- 12.4 Nanorobots for Medical Imaging -- 12.5 Nanorobots for Targeted Drug Delivery -- 12.5.1 Bacterial, Viral, and Parasitic Infection -- 12.5.2 Cancer -- 12.5.3 Cardiovascular Disease -- 12.5.4 Cerebrovascular Disease -- 12.5.5 Hormonal, Metabolic, and Genetic Disease -- 12.5.6 Kidney Diseases -- 12.5.7 Retinal Diseases -- 12.6 Enzymatic Nanolithography -- 12.7 Biomimetic Approach -- 12.8 Cell Biochips -- 12.9 Nanorobots for Precision Surgery -- 12.10 Nanorobots for Detoxification -- 12.11 Fabrication of Nanorobots -- 12.11.1 Microfabrication -- 12.11.2 Nanofabrication -- 12.12 Toxicity -- 12.13 Administration and Retrieval -- 12.14 Clinical Presence of Nanorobots -- 12.15 Reproducibility and Standardization -- 12.16 Regulatory Issues -- 12.16.1 The FDA and Nanorobots -- 12.16.2 PTO and Nanorobots -- 12.17 Conclusion -- References -- Chapter 13 Nanosensors. 13.1 Introduction and Recent Advances -- 13.1.1 What are Nanosensors? -- 13.1.2 Why are they Important? -- 13.1.3 How Nanosensors Work -- 13.1.4 Some Recent Advancements in Nanosensors -- 13.2 Classification of Nanosensors -- 13.2.1 Mechanical Nanosensors -- 13.2.2 Gas Nanosensors -- 13.2.3 Optical Nanosensors -- 13.2.4 Fiber Optic Nanosensors -- 13.2.5 Nanosensors for Electrical Current Measurement -- 13.2.6 Magnetic Nanosensors -- 13.2.7 Biosensors -- 13.2.8 Nanosensors Based on Nanoparticles and Nanoclusters -- 13.2.9 Nanosensors Based on Nanowires, Nanofibers, and CNTs -- 13.2.10 Nanosensors Based on Graphene -- 13.2.11 Nanosensors Based on Bulk Nanostructured Materials -- 13.2.12 Nanosensors Based on Metal-organic Frameworks -- 13.3 Nanosensor Fabrication -- 13.3.1 Top-down Methods -- 13.3.2 Bottom-up Methods -- 13.3.3 Molecular Self-assembly -- 13.4 Inorganic Nanosensors -- 13.4.1 Materials Used -- 13.5 Biopolymer-derived Nanosensors -- 13.5.1 Materials Used -- 13.6 Applications -- 13.6.1 Drug Discovery -- 13.6.2 Monitoring the Effect of Drugs in Mammalian Cell -- 13.6.3 Cancer Diagnosis -- 13.6.4 Tumor Detection -- 13.6.5 Glucose Monitoring -- 13.6.6 pH Sensing -- 13.6.7 Asthma Detection -- 13.6.8 Cell Monitoring -- 13.6.9 Microorganism Detection -- 13.6.10 Protein and DNA Detection -- 13.6.11 Contamination in Organic Implant -- 13.6.12 Astronaut's Diagnosis -- 13.6.13 Other Diagnosis -- 13.6.14 Other Examples of Nanosensor Applications -- 13.7 Regulatory Issues -- 13.8 Conclusions -- References -- Chapter 14 Inorganic Nanoparticles for Drug-delivery Applications -- 14.1 Introduction -- 14.2 Synthesis of Inorganic Nanoparticles -- 14.2.1 Sonochemical Synthesis -- 14.2.2 Solvothermal Process -- 14.2.3 Nucleic Acid-mediated Synthesis -- 14.2.4 Synthesis by Ionizing Radiations -- 14.2.5 Biosynthesis. 14.2.6 Precipitation of Salts in an Aqueous Medium. |
Record Nr. | UNINA-9910595595103321 |
P. M Visakh | ||
Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanostructured polymer membranes . Volume 2 Applications / / Visakh P.M. and Olga Nazarenko |
Autore | P. M Visakh |
Pubbl/distr/stampa | Beverly, Massachusetts : , : Scrivener Publishing |
Descrizione fisica | 1 online resource (555 p.) |
Disciplina | 660/.28424 |
Soggetto topico |
Membranes (Technology) - Materials
Nanostructured materials Polymers Nanofiltration Membrane separation |
ISBN |
1-118-83180-2
1-118-83179-9 1-118-83182-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | volume 1. Processing and characterization -- volume 2. Applications. |
Record Nr. | UNINA-9910134876503321 |
P. M Visakh | ||
Beverly, Massachusetts : , : Scrivener Publishing | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanostructured polymer membranes . Volume 2 Applications / / Visakh P.M. and Olga Nazarenko |
Autore | P. M Visakh |
Pubbl/distr/stampa | Beverly, Massachusetts : , : Scrivener Publishing |
Descrizione fisica | 1 online resource (555 p.) |
Disciplina | 660/.28424 |
Soggetto topico |
Membranes (Technology) - Materials
Nanostructured materials Polymers Nanofiltration Membrane separation |
ISBN |
1-118-83180-2
1-118-83179-9 1-118-83182-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | volume 1. Processing and characterization -- volume 2. Applications. |
Record Nr. | UNINA-9910830069503321 |
P. M Visakh | ||
Beverly, Massachusetts : , : Scrivener Publishing | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanotechnology in Electronics : Materials, Properties, Devices |
Autore | P. M Visakh |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
Descrizione fisica | 1 online resource (379 pages) |
Altri autori (Persone) |
SemkinArtem
BalakrishnanRaneesh LazovicSasa |
Soggetto genere / forma | Electronic books. |
ISBN |
3-527-82422-7
3-527-82421-9 3-527-82423-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Nanotechnology in Electronics, Materials Properties, and Devices: State of the Art and Future Challenges -- 1.1 Graphene‐based Nanoelectronic Biosensors -- 1.2 Zinc Oxide Piezoelectric Nanogenerators for Low‐frequency Applications -- 1.3 Investigation of the Hot Carrier-induced Degradation in Nanoscale Junctionless MOSFETs: A Reliability‐based Analysis -- 1.4 Study of Electrostatic and Dispersion Forces in Nanoelectromechanical Systems (NEMS) -- 1.5 Nanomaterials for Wearable, Flexible, and Stretchable Strain/Pressure Sensors -- 1.6 Conductive Nanomaterials for Printed and Flexible Electronics Application -- 1.7 Metal‐oxide Semiconductors for Noninvasive Diagnosis of Breast Cancer -- 1.8 Down‐conversion Photoluminescence Properties of ZrO2: Ln3+ (Ln & -- equals -- Eu, Sm, Er, Tb, Ho, Tm, Pr, Gd, Dy) Films Formed by Plasma Electrolytic Oxidation -- 1.9 Multiferroics for Spintronic Applications -- 1.10 Quartz Tuning Fork Based Nanosensors -- References -- Chapter 2 Graphene‐based Nanoelectronic Biosensors -- 2.1 Introduction on Graphene -- 2.2 History of Graphene -- 2.3 Properties of Graphene -- 2.4 Fundamentals of G‐Derivatives -- 2.5 Synthesis of Graphene -- 2.5.1 Graphene‐based Nanoelectronics -- 2.5.2 Graphene‐based Biosensors -- 2.5.3 Graphene in Electrochemical Biosensing Platforms -- 2.5.4 Field‐effect Transistors -- 2.5.5 Optical Platform for Biosensing -- 2.6 Applications of Graphene‐based Biosensors -- 2.6.1 Graphene‐based Electrochemical Biosensors -- 2.6.2 Detection of Acute Myocardial Infarction -- 2.6.3 Detection of Lung Cancer -- 2.6.4 Detection of Asthma -- 2.6.5 Detection of Diabetes -- 2.6.5.1 Electrochemical Enzymatic Glucose Biosensor -- 2.6.5.2 Nonenzymatic Glucose Biosensors -- 2.6.6 Detection of Cholesterol -- 2.6.6.1 Enzymatic Detection of Cholesterol.
2.6.6.2 Enzyme‐free Biocatalytic Oxidation of Cholesterol -- 2.6.7 Detection of Hydrogen Peroxide -- 2.6.8 Hydrogen Peroxide Detection in Living Cells -- 2.6.9 Nucleic Acid Biosensors -- 2.6.10 Detection of Enzymes -- 2.6.11 Food Toxin Sensing -- 2.6.12 Heavy Metal Detection -- 2.6.13 Detection of Pesticides -- 2.6.14 Graphene‐based Fluorescent Biosensors -- 2.6.15 Detection of Small Molecules -- 2.6.16 Detection of Nucleic Acids -- 2.6.17 Detection of Pathogens and Food Toxins -- 2.6.18 Detection of Toxic Heavy Metal Ions -- References -- Chapter 3 Zinc Oxide Piezoelectric Nanogenerators for Low‐frequency Applications -- 3.1 Introduction of Zinc Oxide -- 3.1.1 Structure of ZnO NPs -- 3.1.2 Crystal Structure of ZnO NPs -- 3.1.3 Methods for Synthesis of ZnO NPs -- 3.1.3.1 Mechanochemical Methods -- 3.1.3.2 Sol-gel Synthesis -- 3.1.3.3 Hydrothermal Method -- 3.1.3.4 Liquid‐phase Synthesis -- 3.1.3.5 Controlled Precipitation -- 3.1.3.6 Vapor Transport Synthesis -- 3.1.4 Piezoelectric Effect of ZnO -- 3.2 Zinc Oxide Piezoelectric Nanogenerators -- 3.2.1 Nanogenerators -- 3.2.1.1 Piezoelectric Nanogenerators (PENGs) -- 3.2.1.2 Triboelectric Nanogenerators (TENGs) -- 3.2.1.3 Pyroelectric Nanogenerators -- 3.2.1.4 Hybrid Nanogenerators -- 3.2.2 Zinc Oxide Piezoelectric Nanogenerators -- 3.3 Zinc Oxide Piezoelectric Nanogenerators for Low‐frequency Applications -- 3.3.1 Approaches for Scavenging Low‐frequency Vibrations -- 3.3.2 Device Structures -- 3.3.2.1 Arc Shaped -- 3.3.2.2 Cantilever -- Conclusion -- References -- Chapter 4 Investigation of Hot Carrier-induced Degradation in Nanoscale Junctionless MOSFETs: A Reliability‐based Analysis -- 4.1 Introduction -- 4.2 Overview of the Junctionless Paradigm -- 4.3 Simulation Framework of Hot Carrier Degradation -- 4.4 Creation of Interface Traps -- 4.5 Performance Degradation Due to Hot Carrier Effect. 4.6 Hot Carrier Degradation in Digital Applications -- 4.6.1 Static Analysis -- 4.6.2 Transient Analysis -- 4.7 Concluding Remarks -- References -- Chapter 5 Study of Electrostatic and Dispersion Forces in Nanoelectromechanical Systems (NEMS) -- 5.1 Introduction -- 5.2 Electrostatic Forces -- 5.2.1 Rectangular Beam-Plate -- 5.2.2 Wire-Plate -- 5.2.3 Carbon Nanotube (CNT) Sheets -- 5.2.4 Rectangular Tweezers -- 5.2.5 Carbon Nanotube (CNT) Tweezers -- 5.3 Fringing Field Effects -- 5.3.1 Palmer's Model -- 5.3.2 Mejis-Fokkema Model -- 5.3.3 Other Models -- 5.4 Van der Waals Force -- 5.5 Rectangular Beam-Sheets -- 5.5.1 Wire-Plate -- 5.5.2 Carbon Nanotube (CNT) Sheets -- 5.5.3 Rectangular Tweezers -- 5.5.4 Circular Tweezers -- 5.5.5 Carbon Nanotube (CNT) Tweezers -- 5.6 Casimir Force -- 5.6.1 Rectangular Beam-Plate -- 5.6.2 Wire-Plate -- 5.6.3 Carbon Nanotube (CNT) Sheets -- 5.6.4 Rectangular Tweezers -- 5.6.5 Circular Tweezers -- 5.6.6 Carbon Nanotube (CNT) Tweezers -- 5.7 Other Theories Related to the Casimir Force -- 5.7.1 Proximity Force Approximation (PFA) -- 5.7.2 Dirichlet and Neumann Modes -- 5.8 Freestanding Phenomenon -- 5.8.1 Detachment Length -- 5.8.2 Surface Layer and Size‐dependent Effects -- 5.9 Summary -- References -- Chapter 6 Nanomaterials for Wearable, Flexible, and Stretchable Strain/Pressure Sensors -- 6.1 Introduction -- 6.2 Wearable Strain/Pressure Sensors -- 6.2.1 Piezoresistive Sensors -- 6.2.2 Capacitive Sensor -- 6.2.3 Piezoelectric Sensors -- 6.2.4 Triboelectric Sensors -- 6.3 Applications -- 6.3.1 Movement Monitoring and Daily Performance Tracking -- 6.3.2 Health Monitoring -- 6.3.3 Human-machine Interface, Soft Robotics, and Artificial Skin -- 6.4 Conclusion and Outlook -- References -- Chapter 7 Conductive Nanomaterials for Printed and Flexible Electronics Application -- 7.1 Introduction. 7.2 Printing Technology and Challenges with Fabrication of Electronics -- 7.2.1 Inkjet Printing -- 7.2.2 Screen Printing -- 7.2.3 Slot Die Coating -- 7.2.4 Electrohydrodynamic (EHD) Printing -- 7.2.5 Gravure Printing -- 7.2.6 Flexographic Printing -- 7.2.7 Roll‐to‐roll (R2R) Printing -- 7.2.8 Printable Nanomaterials Requirements -- 7.3 Synthesis and Preparation of Nanomaterial‐based Inks -- 7.3.1 Metallic‐based Inks -- 7.3.1.1 Silver Nanoparticles -- 7.3.1.2 Silver Nanowires -- 7.3.2 1D and 2D Material‐based Inks -- 7.3.2.1 CNT Ink -- 7.3.2.2 Graphene Ink -- 7.4 Outlooks and Perspectives -- References -- Chapter 8 Metal‐oxide Semiconductors for Noninvasive Diagnosis of Breast Cancer -- 8.1 Introduction -- 8.2 Sensing Material and Techniques -- 8.3 Biomarkers for Noninvasive Diagnosis of Breast Cancer -- 8.3.1 Body Metabolism for VOC Generation -- 8.3.2 Various Components of Human Breath and Its Related Diseases -- 8.3.3 Breast Cancer-related VOCs -- 8.4 Sensing Elements -- 8.4.1 Various Materials for VOC Sensing -- 8.4.2 Metal Oxides for VOC Sensing -- 8.4.3 Significance of Composite Metal Oxides -- 8.5 Fabrication Methods -- 8.5.1 Thin Film Deposition -- 8.5.1.1 Vacuum‐based Techniques -- 8.5.1.2 Chemical Routes -- 8.5.2 Thick Film Deposition -- 8.5.3 Growth of Nanomaterials -- 8.5.3.1 Physical Methods -- 8.5.3.2 Chemical Methods -- 8.6 Noninvasive Techniques for Breast Cancer Diagnosis -- 8.6.1 Selected Ion Flow Tube Mass Spectrometry (SIFT‐MS) -- 8.6.2 Proton Transfer Reaction Mass Spectrometry (PTR‐MS) -- 8.6.3 Gas Chromatography-Mass Spectrometry (GC‐MS) -- 8.6.4 Differential Mobility Spectrometer (DMS) -- 8.6.5 Chemiresistive Sensing Mechanism -- 8.6.6 Fiber‐optic Sensors -- 8.6.6.1 Evanescent Wave Fiber‐optic VOC Sensors -- 8.6.6.2 Lossy Mode Resonance Fiber‐optic VOC Sensors -- 8.6.7 Surface Plasmon Resonance Sensor. 8.6.8 Calorimetric Sensors -- 8.7 Conclusion -- Acknowledgements -- References -- Chapter 9 Down‐conversion Photoluminescence Properties of ZrO2 : Ln3+ (Ln & -- equals -- Eu, Sm, Er, Tb, Ho, Tm, Pr, Gd, Dy) Films Formed by Plasma Electrolytic Oxidation -- 9.1 Introduction -- 9.2 Experiment -- 9.3 Results and Discussion -- 9.3.1 Morphology, Chemical, and Phase Composition -- 9.3.2 PL of ZrO2 Films -- 9.3.2.1 PL of Undoped ZrO2 -- 9.3.2.2 PL of ZrO2 : Eu3+ -- 9.3.2.3 PL of ZrO2 : Sm3+ -- 9.3.2.4 PL of ZrO2 : Er3+ -- 9.3.2.5 PL of ZrO2 : Tb3+ -- 9.3.2.6 PL of ZrO2 : Ho3+ -- 9.3.2.7 PL of ZrO2 : Tm3+ -- 9.3.2.8 PL of ZrO2 : Pr3+ -- 9.3.2.9 PL of ZrO2 : Gd3+ -- 9.3.2.10 PL of ZrO2 : Dy3+ -- 9.4 CIE Chromaticity of ZrO2 : Ln3+ -- 9.5 Conclusion -- Acknowledgments -- References -- Chapter 10 Multiferroics for Spintronic Applications -- 10.1 Magnetoelectric Multiferroic Materials -- 10.2 Spintronics -- 10.2.1 Fundamental Aspects of Spintronics -- 10.2.2 Giant Magnetoresistance -- 10.2.3 Tunneling Magnetoresistance -- 10.3 Spintronic Devices -- 10.3.1 Spin Valve -- 10.3.2 Multiferroic Tunnel Junctions -- 10.3.3 Spin FET -- 10.3.4 Spin LED -- 10.4 Summary -- References -- Chapter 11 Quartz Tuning Fork-Based Nanosensors -- 11.1 Introduction -- 11.2 Chemical Sensors -- 11.3 Quartz Tuning Forks (QTFs) -- 11.4 Early QTF Development -- 11.5 QTF as a Sensor -- 11.5.1 Mass‐loaded QTFs as Sensors -- 11.5.2 Polymer Wire/Film Modified QTF Sensor -- 11.5.2.1 QTFs Modified with Polymer Wire Bridges -- 11.5.2.2 QTFs Modified with Polymer Film Bridges -- 11.5.2.3 Improving Selectivity of Polymer‐modified QTF Sensors and Classification of VOCs -- 11.6 Conclusions -- References -- Index -- EULA. |
Record Nr. | UNINA-9910623988203321 |
P. M Visakh | ||
Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Poly (ethylene terephthalate) based blends, composites and nanocomposites / / edited by Visakh P. M., Tomsk Polytechnic University, Tomsk, Russia, Mong Liang, Tomsk Polytechnic University, Tomsk, Russia |
Autore | P. M Visakh |
Pubbl/distr/stampa | Oxford, UK : , : Elsevier Science, , [2015] |
Descrizione fisica | 1 online resource (254 p.) |
Disciplina | 668.4234 |
Soggetto topico | Polyethylene |
ISBN | 0-12-801274-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
2.5 - ConclusionsAcknowledgments; References; 3 - Reinforcement of Polyethylene Terephthalate via Addition of Carbon-Based Materials; 3.1 - Introduction; 3.2 - Carbon Nanotubes; 3.3 - Carbon Fibers; 3.4 - Graphene; 3.5 - Polyethylene Terephthalate/Carbon Nanotube Composites; 3.5.1 - Preparation; 3.5.2 - Properties; 3.5.2.1 - Mechanical Properties; 3.5.2.2 - Electrical Properties; 3.5.2.3 - Thermal Properties; 3.5.2.4 - Crystallization; 3.5.3 - Application; 3.6 - Polyethylene Terephthalate/Carbon Fiber Composites; 3.6.1 - Preparation; 3.6.2 - Properties; 3.6.2.1 - Mechanical Performance
3.6.2.2 - Thermal Properties3.6.2.3 - Electrical Conductivity; 3.6.2.4 - Electromagnetic Interference Shielding; 3.6.2.5 - Durable Properties; 3.6.3 - Applications; 3.7 - Polyethylene Terephthalate/Graphene Composites; 3.7.1 - Preparation; 3.7.1.1 - In Situ Polymerization and In Situ Melt Polycondensation; 3.7.1.2 - Melt-Compounding Polymerization; 3.7.2 - Properties; 3.7.2.1 - Mechanical Properties; 3.7.2.2 - Electrical Properties; 3.7.2.3 - Thermal Properties; 3.7.2.4 - Crystallization; 3.7.3 - Application; 3.8 - Conclusions; References 4 - Polyethylene Terephthalate-Based Blends: Thermoplastic and Thermoset |
Record Nr. | UNINA-9910797548003321 |
P. M Visakh | ||
Oxford, UK : , : Elsevier Science, , [2015] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Poly (ethylene terephthalate) based blends, composites and nanocomposites / / edited by Visakh P. M., Tomsk Polytechnic University, Tomsk, Russia, Mong Liang, Tomsk Polytechnic University, Tomsk, Russia |
Autore | P. M Visakh |
Pubbl/distr/stampa | Oxford, UK : , : Elsevier Science, , [2015] |
Descrizione fisica | 1 online resource (254 p.) |
Disciplina | 668.4234 |
Soggetto topico | Polyethylene |
ISBN | 0-12-801274-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
2.5 - ConclusionsAcknowledgments; References; 3 - Reinforcement of Polyethylene Terephthalate via Addition of Carbon-Based Materials; 3.1 - Introduction; 3.2 - Carbon Nanotubes; 3.3 - Carbon Fibers; 3.4 - Graphene; 3.5 - Polyethylene Terephthalate/Carbon Nanotube Composites; 3.5.1 - Preparation; 3.5.2 - Properties; 3.5.2.1 - Mechanical Properties; 3.5.2.2 - Electrical Properties; 3.5.2.3 - Thermal Properties; 3.5.2.4 - Crystallization; 3.5.3 - Application; 3.6 - Polyethylene Terephthalate/Carbon Fiber Composites; 3.6.1 - Preparation; 3.6.2 - Properties; 3.6.2.1 - Mechanical Performance
3.6.2.2 - Thermal Properties3.6.2.3 - Electrical Conductivity; 3.6.2.4 - Electromagnetic Interference Shielding; 3.6.2.5 - Durable Properties; 3.6.3 - Applications; 3.7 - Polyethylene Terephthalate/Graphene Composites; 3.7.1 - Preparation; 3.7.1.1 - In Situ Polymerization and In Situ Melt Polycondensation; 3.7.1.2 - Melt-Compounding Polymerization; 3.7.2 - Properties; 3.7.2.1 - Mechanical Properties; 3.7.2.2 - Electrical Properties; 3.7.2.3 - Thermal Properties; 3.7.2.4 - Crystallization; 3.7.3 - Application; 3.8 - Conclusions; References 4 - Polyethylene Terephthalate-Based Blends: Thermoplastic and Thermoset |
Record Nr. | UNINA-9910818191603321 |
P. M Visakh | ||
Oxford, UK : , : Elsevier Science, , [2015] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Polyvinylchloride-Based Blends : Preparation, Characterization and Applications |
Autore | P. M Visakh |
Pubbl/distr/stampa | Cham : , : Springer International Publishing AG, , 2021 |
Descrizione fisica | 1 online resource (240 pages) |
Altri autori (Persone) | Darie-NitaRaluca Nicoleta |
Collana | Springer Series on Polymer and Composite Materials Ser. |
Soggetto genere / forma | Electronic books. |
ISBN | 3-030-78455-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- About the Editors -- 1 Polyvinylchloride (PVC)-Based Blends: State of Art, New Challenges and Opportunities -- Abstract -- 1.1 PVC: Structure and Properties Relationship -- 1.2 Characterization Techniques of PVC/Thermoplastic Nanoblends -- 1.3 Applications of PVC/Thermoplastic Nano-, Micro- and Macro-Blends -- 1.4 Factors Affecting the Properties of PVC Nano, Micro- and Macro-Blends -- 1.5 Interface Modification and Compatibilization of PVC Nano-, Micro- and Macro-Blends -- 1.6 Biobased Plasticizers for PVC -- 1.7 PVC/Polysaccharides Blends -- 1.8 Preparation of PVC Membranes, Characterization, Modification, Applications and Mathematical Model -- 1.9 Biobased PVC-Related Blends -- 1.10 Conclusions -- References -- 2 Polyvinylchloride (PVC): Structure and Properties Relationship -- Abstract -- 2.1 Introduction -- 2.2 Structure -- 2.3 Synthesis -- 2.4 Polymerization Processes -- 2.4.1 Radical Polymerization -- 2.4.2 Emulsion Polymerization -- 2.4.3 Suspension Polymerization -- 2.5 Additives -- 2.5.1 Heat Stabilizer -- 2.5.2 Plasticizer -- 2.5.3 Impact Modifier -- 2.5.4 Process Aid -- 2.5.5 Lubricant -- 2.5.6 Filler -- 2.5.7 Flame Retardant/Smoke Suppressant -- 2.5.8 Pigment -- 2.5.9 Blowing Agent -- 2.5.10 Biocide -- 2.5.11 Viscosity Modifier -- 2.5.12 Antistatic Agent -- 2.5.13 Antioxidant -- 2.5.14 Antifogging Agent -- 2.5.15 Bonding Agent -- 2.5.16 UV Absorber -- 2.6 Processing of PVC -- 2.6.1 Extrusion -- 2.6.2 Injection Molding -- 2.6.3 Blow Molding -- 2.6.4 Calendering -- 2.6.5 Thermoforming -- 2.7 Properties of PVC -- 2.7.1 Physical Properties -- 2.7.2 Chemical Properties -- 2.7.3 Electrical and Optical Properties -- 2.7.4 Thermal Properties and Flammability -- 2.7.5 Mechanical Properties -- 2.7.6 Morphology -- 2.7.7 Crystal Structure and Crystallization Behavior -- 2.7.8 Weathering and Radiation Resistance.
2.8 Suppliers -- 2.9 Applications -- 2.9.1 Construction -- 2.9.2 Medical -- 2.9.3 Electrical -- 2.9.4 Automobiles -- 2.9.5 Packaging -- 2.9.6 Cards -- 2.9.7 Leisure and Sports -- 2.9.8 Office -- 2.9.9 Clothing -- 2.10 Future and Environmental Impact -- 2.11 Conclusions -- References -- 3 Characterization Techniques of Polyvinylchloride (PVC)/Thermoplastic Nano-Blends -- Abstract -- 3.1 Introduction -- 3.2 Overview of Physicochemical Characteristics -- 3.3 Modalities for Physicochemical Characterization -- 3.4 Conclusion -- Acknowledgements -- References -- 4 Applications of Polyvinylchloride (PVC)/Thermoplastic Nano-, Micro- and Macroblends -- Abstract -- 4.1 Introduction -- 4.2 Applications of PVC/Thermoplastic Nanoblends -- 4.2.1 Packaging Applications -- 4.2.2 Structural Applications -- 4.2.3 Military Applications -- 4.2.4 Aerospace Applications -- 4.3 Applications of PVC/Thermoplastic Microblends -- 4.3.1 Structural Applications -- 4.3.2 Military Applications -- 4.3.3 Aerospace Applications -- 4.3.4 Optical Applications -- 4.4 Applications of PVC/Thermoplastic Macroblends -- 4.4.1 Packaging Applications -- 4.4.2 Aerospace Applications -- 4.4.3 Recycling and Lifetime Studies -- 4.5 Conclusions -- References -- 5 Factors Affecting the Properties of Polyvinylchloride (PVC) Nano-, Micro- and Macro-Blends -- Abstract -- 5.1 Introduction -- 5.2 Mechanical Properties -- 5.2.1 Tensile Strength -- 5.2.2 Young's Modulus -- 5.2.3 Elongation at Break -- 5.2.4 Hardness -- 5.3 Thermal Stability -- 5.4 Electrical Properties -- 5.5 Conclusions -- References -- 6 Interface Modification and Compatibilization of Polyvinylchloride (PVC) Nano-, Micro- and Macro-Blends -- Abstract -- 6.1 PVC and the Basic Principles on Compatibilization of Polymeric Blends -- 6.1.1 Types of Polymeric Blends -- 6.1.2 Miscibility of Polymers. 6.1.3 Strategies for the Compatibilization of Polymeric Blends -- 6.2 Interface Modification of PVC Macro, Micro, and Nano Blends -- 6.2.1 Interface Particularities of PVC Blends -- 6.2.2 Physical Modification of PVC Blends -- 6.2.3 Chemical Modification of PVC Blends -- 6.2.4 Physical-Chemical Modification of PVC Blends -- 6.2.5 Stimuli-Responsive Interfaces -- 6.3 Compatibilization of PVC Macro, Micro, and Nano Blends -- 6.3.1 Thermodynamics of PVC Blends -- 6.3.2 Physical Compatibilization -- 6.3.3 Reactive Polymer Synthesis -- 6.4 Analytic Methods for the Study of Interface and Compatibilization of PVC Blends -- 6.5 Conclusions -- References -- 7 Bio-Based Plasticizers for Polyvinylchloride (PVC) -- Abstract -- 7.1 Introduction -- 7.2 Recent Progress in Performance of PVC Plasticizers as Alternative to DEHP -- 7.2.1 Petroleum-Derived PVC Plasticizers -- 7.2.2 Green Plasticizers for PVC -- 7.2.2.1 External Plasticizers -- 7.2.2.2 PVC Plasticized with Two Bio-Based Plasticizers -- 7.2.2.3 Chemical Modification of PVC/Bio-Based Plasticizers -- 7.2.2.4 Industrial Scale of PVC-Bio-Based Plasticizers -- 7.3 Conclusions and Future Trends -- References -- 8 Polyvinylchloride (PVC)/Polysaccharides Blends -- Abstract -- 8.1 Introduction -- 8.2 PVC/Polysaccharides Blends -- 8.2.1 PVC/Chitosan Blends -- 8.2.2 PVC/Starch blend -- 8.2.2.1 Starch Influence on Mechanical Properties and Biodegradation of PVC Composites -- 8.2.2.2 Solution Blending PVC/starch Acetate -- 8.2.2.3 Biodegradation of PVC/starch Blended Films -- 8.2.3 PVC/Cellulose and Wood Flour Blends -- 8.3 Compatibility of PVC/Polysaccharides Blend -- 8.3.1 PVC/Wood Blends -- 8.3.2 PVC/Chitosan Blends -- 8.3.3 Compatibilization of PVC/Starch Blends -- 8.4 Conclusions -- References. 9 Preparation of Polyvinylchloride (PVC) Membranes, Characterization, Modification, Applications, and Mathematical Model -- Abstract -- 9.1 Introduction -- 9.2 Polyvinylchloride (PVC) Membrane Preparation Methods -- 9.2.1 Phase Inversion (PI) Method -- 9.2.2 Modification of PVC Membrane -- 9.3 PVC Membrane Characterization [20, 30] -- 9.3.1 Polymer Solution Properties -- 9.3.2 Mechanical Properties -- 9.3.3 PVC Membrane Thickness -- 9.3.4 Pore Size and Porosity -- 9.3.5 Scanning Electron Microscopy (SEM) Analysis -- 9.3.6 Atomic Force Microscopy (AFM) -- 9.3.7 Contact Angles -- 9.3.8 Differential Scanning Calorimetry (DSC) -- 9.3.9 X-Ray Diffraction (XRD) -- 9.3.10 Energy-Dispersive X-Ray Spectroscopy (EDX) -- 9.3.11 Fourier Transform Infrared Spectroscopy (FTIR) -- 9.3.12 Thermogravimetric Analysis (TGA) -- 9.3.13 Abrasion Resistance Test -- 9.4 Application of PVC Membrane -- 9.4.1 Microfiltration -- 9.4.2 Ultrafiltration (UF) -- 9.4.3 Nanofiltration (NF) -- 9.4.4 Reverse Osmosis (RO) Process -- 9.4.5 Pervaporation (PV) -- 9.4.6 Membrane Distillation (MD) -- 9.4.7 Electrodialysis (ED) -- 9.5 Mathematical Model for PVC Membrane Preparation -- 9.5.1 Flory-Huggins Model for Polymeric Solution -- 9.5.2 Diffusion Model of Immersion Precipitation -- References -- 10 Bio-Based Polyvinylchloride (PVC)-Related Blends -- Abstract -- 10.1 Introduction -- 10.2 PVC Bio-Related Nanoblends -- 10.3 PVC/Polyester Bio-Related Blends -- 10.3.1 PVC/Polyhydroxyalkanoate (PHA) Blends -- 10.3.2 PVC/Poly(ε-Caprolactone) (PCL) Blends -- 10.4 PVC/Polysaccharide Bio-Related Blends -- 10.4.1 PVC/Starch Blends -- 10.4.2 PVC/Chitosan (CS) Blends -- 10.5 PVC/Natural Filler Bio-Related Blends -- 10.6 PVC/Protein (Collagen) Bio-Related Blends -- 10.7 PVC/ Poly(Vinyl Alcohol) (PVA) Bio-Related Blends -- 10.8 Conclusions and Future Trends -- References. |
Altri titoli varianti | Polyvinylchloride-Based Blends |
Record Nr. | UNINA-9910503004403321 |
P. M Visakh | ||
Cham : , : Springer International Publishing AG, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|