top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Data science for fake news : surveys and perspectives / / Deepak P. [and three others]
Data science for fake news : surveys and perspectives / / Deepak P. [and three others]
Autore P Deepak
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (308 pages)
Disciplina 070.4
Collana The Information Retrieval
Soggetto topico Fake news
Journalism - Data processing
Data mining
ISBN 3-030-62696-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- A Multifaceted Approach to Fake News -- 1 Introduction -- 2 Surveys -- 2.1 Unsupervised Methods for Fake News Detection -- 2.2 Multimodal Fake News Detection -- 2.3 Deep Learning Methods for Fake News Detection -- 2.4 Dynamics of Fake News Diffusion -- 2.5 Neural Text Generation -- 2.6 Fact Checking on Knowledge Graph -- 2.7 Graph Mining Meets Fake News Detection -- 3 Perspectives -- 3.1 Fake News in Health Sciences -- 3.2 Ethical Considerations in Data-Driven Fake News Detection -- 3.3 A Political Science Perspective on Fake News -- 3.4 Fake News and Social Processes -- 3.5 Misinformation and the Indian Election -- 3.6 Science and Technology Studies (STS) and Fake News -- 3.7 Linguistic Approaches to Fake News Detection -- 4 Concluding Remarks -- References -- Part I Survey -- On Unsupervised Methods for Fake News Detection -- 1 Introduction -- 1.1 Paradigms of Machine Learning vis-à-vis Supervision -- 1.2 Challenges for Unsupervised Learning in Fake News Detection -- 2 Unsupervised Fake News Detection: A Conceptual Analysis -- 2.1 Conceptual Basis for UFND Methods -- 2.2 Critical Analysis of UFND Conceptual Bases -- Truth Discovery -- Differentiating User Types -- Propagandist Patterns -- Inter-user Dynamics -- 2.3 Building Blocks for UFND -- 3 Unsupervised Fake News Detection: A Methodological Analysis -- 3.1 Truth Discovery -- 3.2 Differentiating User Types -- 3.3 Propagandist Patterns -- 3.4 Inter-user Dynamics -- 4 The Road Ahead for Unsupervised Fake News Detection -- 4.1 Specialist Domains and Authoritative Sources -- 4.2 Statistical Data for Fake News Detection -- 4.3 Early Detection -- 4.4 Miscellaneous -- Maligning Brands Through Fake Information -- Explainability in UFND -- 5 Conclusions -- References -- Multi-modal Fake News Detection -- 1 Introduction.
2 Challenges and Opportunities -- 3 Multi-modal Fake News Datasets -- 3.1 Fake Microblog Datasets -- 3.2 Fake News Datasets -- 4 State-of-the-Art Models -- 5 Unsupervised Approach -- 6 Early Fusion Approaches -- 6.1 JIN -- 6.2 TI-CNN -- 6.3 MKEMN -- 6.4 SpotFake and SpotFake+ -- 6.5 MCE -- 6.6 SAFE -- 7 Late Fusion Approaches -- 7.1 AGARWAL -- 7.2 MVNN -- 8 Hybrid Fusion Approach -- 9 Adversarial Model -- 9.1 SAME -- 10 Autoencoder Model -- 11 Summary of the Chapter -- References -- Deep Learning for Fake News Detection -- 1 Introduction -- 1.1 Fake News Types -- 1.2 Early Works -- 2 Deep Learning Methods -- 2.1 Fake News Detection Using CNN -- 2.2 Fake News Detection Using RNN and Its Variants -- 2.3 Multimodal Methods -- 3 Datasets and Evaluation Metrics -- 3.1 Datasets -- 3.2 Evaluation Metrics -- 3.3 Discussion -- 4 Trends in Fake News Detection Using Deep Learning -- 4.1 Geometric Deep Learning -- 4.2 Explainable Fake News Detection -- 4.3 Profiling Fake News Spreaders -- 4.4 Neural Fake News Detection -- 4.5 Discussion -- 5 Conclusion -- References -- Dynamics of Fake News Diffusion -- 1 Introduction -- 2 Fake News Diffusion on Facebook -- 3 Fake News Diffusion on Twitter -- 4 Role of Bots in Spreading Fake News -- 5 Trees for Modeling Information Diffusion -- 6 Identifying the Sources of Fake News -- 7 Modeling Fake News Diffusion -- 7.1 Susceptible-Infected-Recovered (SIR) Model -- 7.2 Dynamic Linear Threshold (DLT) -- Network Construction -- Problem Definition -- Component I: Diffusion Dynamics -- Component II: Updating Personal Belief -- Component III: Misinformation Blocking -- 7.3 Percolation Model -- Network Components -- Adoption of Information -- Branching and Size of Cascade -- Parameter Estimation -- 7.4 Spread-Stifle Model -- How the Spread-Stifle Model Differs from Others? -- Mean-Field Approach -- Reachability Probabilities.
Transition Probabilities -- Mean-Field Rate of Change -- 8 Strategies to Minimize the Spread of Fake News -- 9 Summary of the Chapter -- References -- Neural Language Models for (Fake?) News Generation -- 1 Introduction -- 2 Modeling Approaches -- 2.1 Learning Paradigms for NLG -- 2.2 Language Models -- 2.3 Encoder-Decoder Attention -- 2.4 Autoregression -- 2.5 Seq2Seq Model -- 3 Learning Paradigms -- 3.1 Supervised Learning Techniques -- 3.2 Adversarial Learning Techniques -- 3.3 Reinforcement Learning Techniques -- 3.4 Embedding Techniques -- 4 Pre-trained Language Models -- 4.1 Contextualized Word Vectors (CoVe) -- 4.2 Embeddings from Language Model (ELMo) -- 4.3 BERT -- 4.4 RoBERTa -- 4.5 Transformer-XL -- 4.6 Larger Language Models -- 4.7 XLNet -- 4.8 GROVER -- 4.9 CTRL -- 4.10 Seq2Seq Pre-training Models -- 4.11 Discussion -- 5 (Fake?) News Generation and Future Prospects -- 6 Conclusion -- References -- Fact Checking on Knowledge Graphs -- 1 Introduction -- 2 Preliminaries -- 2.1 Knowledge Graph -- 2.2 RDF -- 3 Models -- 4 Knowledge Linker -- 5 PredPath -- 6 Knowledge Stream -- 7 Conclusion and Future Work -- References -- Graph Mining Meets Fake News Detection -- 1 Characteristics and Challenges -- 2 Graph Models in Fake News Detection -- 2.1 Information -- 2.2 Graph Models -- 3 Unimodal Scenario: Static Graph-Based Methods -- 3.1 Graph Statistics Detection -- 3.2 Dense Subgraph Mining -- 3.3 Benefits and Issues -- 4 Multi-modal Scenario -- 4.1 Dynamic Graph-Based Approaches -- 4.2 Graph-Assisted Learning Approaches -- 4.3 Benefits and Issues -- 5 Summary of the Chapter -- References -- Part II Perspectives -- Fake News in Health and Medicine -- 1 Polish Health Misinformation Study -- 2 Stanford University Study: Cannabis, a Cure for Cancer -- 3 NBC News Study -- 4 Dandelion, the Magical Weed -- 5 Polarised Facts.
6 Fake News During the Pandemic -- 7 Consequences of Health Misinformation -- 8 Managing Health Misinformation -- References -- Ethical Considerations in Data-Driven Fake News Detection -- 1 Introduction -- 2 Ethical Dimensions of DFND -- 2.1 Mismatch of Values -- 2.2 Nature of Data-Driven Learning -- 2.3 Domain Properties -- 3 Fairness and DFND -- 4 Democratic Values and Uptake of DFND -- 5 Conclusions -- References -- A Political Science Perspective on Fake News -- 1 Introduction -- 2 The Origins of Fake News -- 3 Fake News in the Twenty-First Century -- 4 Fake News and the Study of Politics -- 5 Conclusion -- References -- Fake News and Social Processes: A Short Review -- 1 Introduction -- 2 Sociological Studies of Disinformation -- 3 Vaccine Hesitancy -- 4 Elections -- 5 Other Social Processes -- 6 Conclusions -- References -- Misinformation and the Indian Election: Case Study -- 1 Misinformation and Disinformation in India -- 1.1 Misinformation and Disinformation in India -- 1.2 Closed Networks for Disinformation -- 1.3 Scale, Prevalence, and Complexity of the Problem -- 1.4 Early Solutions and Fact-Checking in India -- 2 Logically's Capabilities -- 2.1 Automation to Augment Value -- 2.2 Credibility vs. Veracity -- 3 Credibility Assessment -- 3.1 Credibility Assessment -- Network Analysis -- Metadata -- Content Analysis -- 3.2 Credibility Assessment Methodology During Indian Elections -- Findings During Indian Elections -- Credibility Assessment: Evaluation -- 4 Veracity Assessment -- 4.1 Methodology: The Life Cycle of a Claim -- 4.2 Methodology During Indian Elections -- Findings During Indian Elections -- Evaluation -- 5 WhatsApp Solution for a Sharing Nation -- 5.1 Long-Standing Questions -- 5.2 Related Work -- 5.3 Exposing Misinformation on Closed Networks -- 5.4 Disseminating Verifications to Audiences Exposed to Mis/Disinformation.
STS, Data Science, and Fake News: Questions and Challenges -- 1 Introduction -- 2 Truth, Power, and Knowledge -- 3 Truth Versus Post-truth -- References -- Linguistic Approaches to Fake News Detection -- 1 Introduction -- 1.1 Defining Fake News -- 1.2 Linguistics, Sub-disciplines, and Methods -- 1.3 News in Linguistics -- 1.4 Deception in Linguistics -- 1.5 Different Texts and Contexts -- 2 Linguistic Approaches to Fake News Detection -- 2.1 Bag of Words and LIWC -- 2.2 Readability and Punctuation -- 2.3 Deep Syntax -- 2.4 Rhetorical Structure and Discourse Analysis -- 3 Conclusions -- References.
Record Nr. UNINA-9910483306903321
P Deepak  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data science for fake news : surveys and perspectives / / Deepak P. [and three others]
Data science for fake news : surveys and perspectives / / Deepak P. [and three others]
Autore P Deepak
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (308 pages)
Disciplina 070.4
Collana The Information Retrieval
Soggetto topico Fake news
Journalism - Data processing
Data mining
ISBN 3-030-62696-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- A Multifaceted Approach to Fake News -- 1 Introduction -- 2 Surveys -- 2.1 Unsupervised Methods for Fake News Detection -- 2.2 Multimodal Fake News Detection -- 2.3 Deep Learning Methods for Fake News Detection -- 2.4 Dynamics of Fake News Diffusion -- 2.5 Neural Text Generation -- 2.6 Fact Checking on Knowledge Graph -- 2.7 Graph Mining Meets Fake News Detection -- 3 Perspectives -- 3.1 Fake News in Health Sciences -- 3.2 Ethical Considerations in Data-Driven Fake News Detection -- 3.3 A Political Science Perspective on Fake News -- 3.4 Fake News and Social Processes -- 3.5 Misinformation and the Indian Election -- 3.6 Science and Technology Studies (STS) and Fake News -- 3.7 Linguistic Approaches to Fake News Detection -- 4 Concluding Remarks -- References -- Part I Survey -- On Unsupervised Methods for Fake News Detection -- 1 Introduction -- 1.1 Paradigms of Machine Learning vis-à-vis Supervision -- 1.2 Challenges for Unsupervised Learning in Fake News Detection -- 2 Unsupervised Fake News Detection: A Conceptual Analysis -- 2.1 Conceptual Basis for UFND Methods -- 2.2 Critical Analysis of UFND Conceptual Bases -- Truth Discovery -- Differentiating User Types -- Propagandist Patterns -- Inter-user Dynamics -- 2.3 Building Blocks for UFND -- 3 Unsupervised Fake News Detection: A Methodological Analysis -- 3.1 Truth Discovery -- 3.2 Differentiating User Types -- 3.3 Propagandist Patterns -- 3.4 Inter-user Dynamics -- 4 The Road Ahead for Unsupervised Fake News Detection -- 4.1 Specialist Domains and Authoritative Sources -- 4.2 Statistical Data for Fake News Detection -- 4.3 Early Detection -- 4.4 Miscellaneous -- Maligning Brands Through Fake Information -- Explainability in UFND -- 5 Conclusions -- References -- Multi-modal Fake News Detection -- 1 Introduction.
2 Challenges and Opportunities -- 3 Multi-modal Fake News Datasets -- 3.1 Fake Microblog Datasets -- 3.2 Fake News Datasets -- 4 State-of-the-Art Models -- 5 Unsupervised Approach -- 6 Early Fusion Approaches -- 6.1 JIN -- 6.2 TI-CNN -- 6.3 MKEMN -- 6.4 SpotFake and SpotFake+ -- 6.5 MCE -- 6.6 SAFE -- 7 Late Fusion Approaches -- 7.1 AGARWAL -- 7.2 MVNN -- 8 Hybrid Fusion Approach -- 9 Adversarial Model -- 9.1 SAME -- 10 Autoencoder Model -- 11 Summary of the Chapter -- References -- Deep Learning for Fake News Detection -- 1 Introduction -- 1.1 Fake News Types -- 1.2 Early Works -- 2 Deep Learning Methods -- 2.1 Fake News Detection Using CNN -- 2.2 Fake News Detection Using RNN and Its Variants -- 2.3 Multimodal Methods -- 3 Datasets and Evaluation Metrics -- 3.1 Datasets -- 3.2 Evaluation Metrics -- 3.3 Discussion -- 4 Trends in Fake News Detection Using Deep Learning -- 4.1 Geometric Deep Learning -- 4.2 Explainable Fake News Detection -- 4.3 Profiling Fake News Spreaders -- 4.4 Neural Fake News Detection -- 4.5 Discussion -- 5 Conclusion -- References -- Dynamics of Fake News Diffusion -- 1 Introduction -- 2 Fake News Diffusion on Facebook -- 3 Fake News Diffusion on Twitter -- 4 Role of Bots in Spreading Fake News -- 5 Trees for Modeling Information Diffusion -- 6 Identifying the Sources of Fake News -- 7 Modeling Fake News Diffusion -- 7.1 Susceptible-Infected-Recovered (SIR) Model -- 7.2 Dynamic Linear Threshold (DLT) -- Network Construction -- Problem Definition -- Component I: Diffusion Dynamics -- Component II: Updating Personal Belief -- Component III: Misinformation Blocking -- 7.3 Percolation Model -- Network Components -- Adoption of Information -- Branching and Size of Cascade -- Parameter Estimation -- 7.4 Spread-Stifle Model -- How the Spread-Stifle Model Differs from Others? -- Mean-Field Approach -- Reachability Probabilities.
Transition Probabilities -- Mean-Field Rate of Change -- 8 Strategies to Minimize the Spread of Fake News -- 9 Summary of the Chapter -- References -- Neural Language Models for (Fake?) News Generation -- 1 Introduction -- 2 Modeling Approaches -- 2.1 Learning Paradigms for NLG -- 2.2 Language Models -- 2.3 Encoder-Decoder Attention -- 2.4 Autoregression -- 2.5 Seq2Seq Model -- 3 Learning Paradigms -- 3.1 Supervised Learning Techniques -- 3.2 Adversarial Learning Techniques -- 3.3 Reinforcement Learning Techniques -- 3.4 Embedding Techniques -- 4 Pre-trained Language Models -- 4.1 Contextualized Word Vectors (CoVe) -- 4.2 Embeddings from Language Model (ELMo) -- 4.3 BERT -- 4.4 RoBERTa -- 4.5 Transformer-XL -- 4.6 Larger Language Models -- 4.7 XLNet -- 4.8 GROVER -- 4.9 CTRL -- 4.10 Seq2Seq Pre-training Models -- 4.11 Discussion -- 5 (Fake?) News Generation and Future Prospects -- 6 Conclusion -- References -- Fact Checking on Knowledge Graphs -- 1 Introduction -- 2 Preliminaries -- 2.1 Knowledge Graph -- 2.2 RDF -- 3 Models -- 4 Knowledge Linker -- 5 PredPath -- 6 Knowledge Stream -- 7 Conclusion and Future Work -- References -- Graph Mining Meets Fake News Detection -- 1 Characteristics and Challenges -- 2 Graph Models in Fake News Detection -- 2.1 Information -- 2.2 Graph Models -- 3 Unimodal Scenario: Static Graph-Based Methods -- 3.1 Graph Statistics Detection -- 3.2 Dense Subgraph Mining -- 3.3 Benefits and Issues -- 4 Multi-modal Scenario -- 4.1 Dynamic Graph-Based Approaches -- 4.2 Graph-Assisted Learning Approaches -- 4.3 Benefits and Issues -- 5 Summary of the Chapter -- References -- Part II Perspectives -- Fake News in Health and Medicine -- 1 Polish Health Misinformation Study -- 2 Stanford University Study: Cannabis, a Cure for Cancer -- 3 NBC News Study -- 4 Dandelion, the Magical Weed -- 5 Polarised Facts.
6 Fake News During the Pandemic -- 7 Consequences of Health Misinformation -- 8 Managing Health Misinformation -- References -- Ethical Considerations in Data-Driven Fake News Detection -- 1 Introduction -- 2 Ethical Dimensions of DFND -- 2.1 Mismatch of Values -- 2.2 Nature of Data-Driven Learning -- 2.3 Domain Properties -- 3 Fairness and DFND -- 4 Democratic Values and Uptake of DFND -- 5 Conclusions -- References -- A Political Science Perspective on Fake News -- 1 Introduction -- 2 The Origins of Fake News -- 3 Fake News in the Twenty-First Century -- 4 Fake News and the Study of Politics -- 5 Conclusion -- References -- Fake News and Social Processes: A Short Review -- 1 Introduction -- 2 Sociological Studies of Disinformation -- 3 Vaccine Hesitancy -- 4 Elections -- 5 Other Social Processes -- 6 Conclusions -- References -- Misinformation and the Indian Election: Case Study -- 1 Misinformation and Disinformation in India -- 1.1 Misinformation and Disinformation in India -- 1.2 Closed Networks for Disinformation -- 1.3 Scale, Prevalence, and Complexity of the Problem -- 1.4 Early Solutions and Fact-Checking in India -- 2 Logically's Capabilities -- 2.1 Automation to Augment Value -- 2.2 Credibility vs. Veracity -- 3 Credibility Assessment -- 3.1 Credibility Assessment -- Network Analysis -- Metadata -- Content Analysis -- 3.2 Credibility Assessment Methodology During Indian Elections -- Findings During Indian Elections -- Credibility Assessment: Evaluation -- 4 Veracity Assessment -- 4.1 Methodology: The Life Cycle of a Claim -- 4.2 Methodology During Indian Elections -- Findings During Indian Elections -- Evaluation -- 5 WhatsApp Solution for a Sharing Nation -- 5.1 Long-Standing Questions -- 5.2 Related Work -- 5.3 Exposing Misinformation on Closed Networks -- 5.4 Disseminating Verifications to Audiences Exposed to Mis/Disinformation.
STS, Data Science, and Fake News: Questions and Challenges -- 1 Introduction -- 2 Truth, Power, and Knowledge -- 3 Truth Versus Post-truth -- References -- Linguistic Approaches to Fake News Detection -- 1 Introduction -- 1.1 Defining Fake News -- 1.2 Linguistics, Sub-disciplines, and Methods -- 1.3 News in Linguistics -- 1.4 Deception in Linguistics -- 1.5 Different Texts and Contexts -- 2 Linguistic Approaches to Fake News Detection -- 2.1 Bag of Words and LIWC -- 2.2 Readability and Punctuation -- 2.3 Deep Syntax -- 2.4 Rhetorical Structure and Discourse Analysis -- 3 Conclusions -- References.
Record Nr. UNISA-996464512003316
P Deepak  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Operators for Similarity Search : Semantics, Techniques and Usage Scenarios / / by Deepak P, Prasad M. Deshpande
Operators for Similarity Search : Semantics, Techniques and Usage Scenarios / / by Deepak P, Prasad M. Deshpande
Autore P Deepak
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (122 p.)
Disciplina 006.312
Collana SpringerBriefs in Computer Science
Soggetto topico Information storage and retrieval
Computer science—Mathematics
Artificial intelligence
Data mining
Information Storage and Retrieval
Discrete Mathematics in Computer Science
Artificial Intelligence
Data Mining and Knowledge Discovery
ISBN 3-319-21257-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Introduction -- 2 Fundamentals of Similarity Search -- 3 Common Similarity Search Operators -- 4 Categorizing Operators -- 5 Advanced Operators for Similarity Search -- 6 Indexing for Similarity Search Operators -- 7 The Road Ahead.
Record Nr. UNINA-9910299254003321
P Deepak  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui