Electron transport in nanostructures and mesoscopic devices [[electronic resource] /] / Thierry Ouisse |
Autore | Ouisse Thierry |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (399 p.) |
Disciplina |
530.4/1
620.5 |
Collana | ISTE |
Soggetto topico |
Electron transport
Nanostructured materials - Electric properties Nanostructures - Electric properties Mesoscopic phenomena (Physics) |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-16520-8
9786612165207 0-470-61139-1 0-470-39400-5 |
Classificazione | VE 9850 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Electron Transport in Nanostructures and Mesoscopic Devices; Table of Contents; Chapter 1. Introduction; 1.1. Introduction and preliminary warning; 1.2. Bibliography; Chapter 2. Some Useful Concepts and Reminders; 2.1. Quantum mechanics and the Schrödinger equation; 2.1.1. A more than brief introduction; 2.1.2. The postulates of quantum mechanics; 2.1.3. Essential properties of observables; 2.1.4. Momentum operator; 2.1.5. Stationary states; 2.1.6. Probability current; 2.1.7. Electrons in vacuum and group velocity; 2.2. Energy band structure in a periodic lattice
2.3. Semi-classical approximation2.4. Electrons and holes; 2.5. Semiconductor heterostructure; 2.6. Quantum well; 2.6.1. 1D case; 2.6.2. Coupled quantum wells; 2.6.3. Quantum-confined Stark effect; 2.7. Tight-binding approximation; 2.8. Effective mass approximation; 2.8.1. Wannier functions; 2.8.2. Effective mass Schrödinger equation; 2.9. How good is the effective mass approximation in a confined structure?; 2.10. Density of states; 2.10.1. 3D case; 2.10.2. 2D case; 2.10.3. 1D case; 2.10.4. Summary; 2.11. Fermi-Dirac statistics; 2.12. Examples of 2D systems 2.13. Characteristic lengths and mesoscopic nature of electron transport2.14. Mobility: Drude model; 2.15. Conduction in degenerate materials; 2.16. Einstein relationship; 2.17. Low magnetic field transport; 2.18. High magnetic field transport; 2.18.1. Introduction; 2.18.2. Some reminders about the particle Hamiltonian in the presence of an electromagnetic field; 2.18.3. Action of a magnetic field (classical); 2.18.4. High magnetic field transport; 2.19. Exercises; 2.19.1. Exercise; 2.19.2. Exercise; 2.19.3. Exercise; 2.19.4. Exercise; 2.20. Bibliography Chapter 3. Ballistic Transport and Transmission Conductance3.1. Conductance of a ballistic conductor; 3.2. Connection between 2D and 1D systems; 3.3. A classical analogy; 3.4. Transmission conductance: Landauer's formula; 3.5. What if the device length really does go down to zero?; 3.6. A smart experiment which shows you everything; 3.7. Relationship between the Landauer formula and Ohm's law; 3.8. Dissipation with a scatterer; 3.9. Voltage probe measurements; 3.10. Comment about the assumption that T is constant; 3.11. Generalization of Landauer's formula: Büttiker's formula 3.11.1. Büttiker's formula3.11.2. Three-terminal device; 3.11.3. Four-terminal device; 3.12. Non-zero temperature; 3.12.1. Large applied bias μ1-μ2>>0; 3.12.2. Incoherent states; 3.12.3. Coherent states; 3.12.4. Physical parameters included in the transmission probability; 3.12.5. Linear response (μ1-μ2 |
Record Nr. | UNINA-9910139492503321 |
Ouisse Thierry
![]() |
||
London, : ISTE | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Electron transport in nanostructures and mesoscopic devices [[electronic resource] /] / Thierry Ouisse |
Autore | Ouisse Thierry |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (399 p.) |
Disciplina |
530.4/1
620.5 |
Collana | ISTE |
Soggetto topico |
Electron transport
Nanostructured materials - Electric properties Nanostructures - Electric properties Mesoscopic phenomena (Physics) |
ISBN |
1-282-16520-8
9786612165207 0-470-61139-1 0-470-39400-5 |
Classificazione | VE 9850 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Electron Transport in Nanostructures and Mesoscopic Devices; Table of Contents; Chapter 1. Introduction; 1.1. Introduction and preliminary warning; 1.2. Bibliography; Chapter 2. Some Useful Concepts and Reminders; 2.1. Quantum mechanics and the Schrödinger equation; 2.1.1. A more than brief introduction; 2.1.2. The postulates of quantum mechanics; 2.1.3. Essential properties of observables; 2.1.4. Momentum operator; 2.1.5. Stationary states; 2.1.6. Probability current; 2.1.7. Electrons in vacuum and group velocity; 2.2. Energy band structure in a periodic lattice
2.3. Semi-classical approximation2.4. Electrons and holes; 2.5. Semiconductor heterostructure; 2.6. Quantum well; 2.6.1. 1D case; 2.6.2. Coupled quantum wells; 2.6.3. Quantum-confined Stark effect; 2.7. Tight-binding approximation; 2.8. Effective mass approximation; 2.8.1. Wannier functions; 2.8.2. Effective mass Schrödinger equation; 2.9. How good is the effective mass approximation in a confined structure?; 2.10. Density of states; 2.10.1. 3D case; 2.10.2. 2D case; 2.10.3. 1D case; 2.10.4. Summary; 2.11. Fermi-Dirac statistics; 2.12. Examples of 2D systems 2.13. Characteristic lengths and mesoscopic nature of electron transport2.14. Mobility: Drude model; 2.15. Conduction in degenerate materials; 2.16. Einstein relationship; 2.17. Low magnetic field transport; 2.18. High magnetic field transport; 2.18.1. Introduction; 2.18.2. Some reminders about the particle Hamiltonian in the presence of an electromagnetic field; 2.18.3. Action of a magnetic field (classical); 2.18.4. High magnetic field transport; 2.19. Exercises; 2.19.1. Exercise; 2.19.2. Exercise; 2.19.3. Exercise; 2.19.4. Exercise; 2.20. Bibliography Chapter 3. Ballistic Transport and Transmission Conductance3.1. Conductance of a ballistic conductor; 3.2. Connection between 2D and 1D systems; 3.3. A classical analogy; 3.4. Transmission conductance: Landauer's formula; 3.5. What if the device length really does go down to zero?; 3.6. A smart experiment which shows you everything; 3.7. Relationship between the Landauer formula and Ohm's law; 3.8. Dissipation with a scatterer; 3.9. Voltage probe measurements; 3.10. Comment about the assumption that T is constant; 3.11. Generalization of Landauer's formula: Büttiker's formula 3.11.1. Büttiker's formula3.11.2. Three-terminal device; 3.11.3. Four-terminal device; 3.12. Non-zero temperature; 3.12.1. Large applied bias μ1-μ2>>0; 3.12.2. Incoherent states; 3.12.3. Coherent states; 3.12.4. Physical parameters included in the transmission probability; 3.12.5. Linear response (μ1-μ2 |
Record Nr. | UNINA-9910830043003321 |
Ouisse Thierry
![]() |
||
London, : ISTE | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Electron transport in nanostructures and mesoscopic devices / / Thierry Ouisse |
Autore | Ouisse Thierry |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (399 p.) |
Disciplina | 530.4/1 |
Collana | ISTE |
Soggetto topico |
Electron transport
Nanostructured materials - Electric properties Nanostructures - Electric properties Mesoscopic phenomena (Physics) |
ISBN |
1-282-16520-8
9786612165207 0-470-61139-1 0-470-39400-5 |
Classificazione | VE 9850 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Electron Transport in Nanostructures and Mesoscopic Devices; Table of Contents; Chapter 1. Introduction; 1.1. Introduction and preliminary warning; 1.2. Bibliography; Chapter 2. Some Useful Concepts and Reminders; 2.1. Quantum mechanics and the Schrödinger equation; 2.1.1. A more than brief introduction; 2.1.2. The postulates of quantum mechanics; 2.1.3. Essential properties of observables; 2.1.4. Momentum operator; 2.1.5. Stationary states; 2.1.6. Probability current; 2.1.7. Electrons in vacuum and group velocity; 2.2. Energy band structure in a periodic lattice
2.3. Semi-classical approximation2.4. Electrons and holes; 2.5. Semiconductor heterostructure; 2.6. Quantum well; 2.6.1. 1D case; 2.6.2. Coupled quantum wells; 2.6.3. Quantum-confined Stark effect; 2.7. Tight-binding approximation; 2.8. Effective mass approximation; 2.8.1. Wannier functions; 2.8.2. Effective mass Schrödinger equation; 2.9. How good is the effective mass approximation in a confined structure?; 2.10. Density of states; 2.10.1. 3D case; 2.10.2. 2D case; 2.10.3. 1D case; 2.10.4. Summary; 2.11. Fermi-Dirac statistics; 2.12. Examples of 2D systems 2.13. Characteristic lengths and mesoscopic nature of electron transport2.14. Mobility: Drude model; 2.15. Conduction in degenerate materials; 2.16. Einstein relationship; 2.17. Low magnetic field transport; 2.18. High magnetic field transport; 2.18.1. Introduction; 2.18.2. Some reminders about the particle Hamiltonian in the presence of an electromagnetic field; 2.18.3. Action of a magnetic field (classical); 2.18.4. High magnetic field transport; 2.19. Exercises; 2.19.1. Exercise; 2.19.2. Exercise; 2.19.3. Exercise; 2.19.4. Exercise; 2.20. Bibliography Chapter 3. Ballistic Transport and Transmission Conductance3.1. Conductance of a ballistic conductor; 3.2. Connection between 2D and 1D systems; 3.3. A classical analogy; 3.4. Transmission conductance: Landauer's formula; 3.5. What if the device length really does go down to zero?; 3.6. A smart experiment which shows you everything; 3.7. Relationship between the Landauer formula and Ohm's law; 3.8. Dissipation with a scatterer; 3.9. Voltage probe measurements; 3.10. Comment about the assumption that T is constant; 3.11. Generalization of Landauer's formula: Büttiker's formula 3.11.1. Büttiker's formula3.11.2. Three-terminal device; 3.11.3. Four-terminal device; 3.12. Non-zero temperature; 3.12.1. Large applied bias μ1-μ2>>0; 3.12.2. Incoherent states; 3.12.3. Coherent states; 3.12.4. Physical parameters included in the transmission probability; 3.12.5. Linear response (μ1-μ2 |
Record Nr. | UNINA-9910876887203321 |
Ouisse Thierry
![]() |
||
London, : ISTE | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|