top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Cooperative and cognitive satellite systems / / edited by Symeon Chatzinotas, Björn Ottersten, Riccardo De Gaudenzi ; contributors, Nader Alagha [and fifty-two others]
Cooperative and cognitive satellite systems / / edited by Symeon Chatzinotas, Björn Ottersten, Riccardo De Gaudenzi ; contributors, Nader Alagha [and fifty-two others]
Pubbl/distr/stampa Amsterdam, [Netherlands] : , : Academic Press, , 2015
Descrizione fisica 1 online resource (542 p.)
Disciplina 621.3825
Soggetto topico Artificial satellites in telecommunication
Multiuser detection (Telecommunication)
Cognitive radio networks
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Cooperative and Cognitive Satellite Systems; Copyright ; Contents; List of contributors; Preface; Cooperative and cognitive satellite systems; 1 Introduction; 1.1 Cooperative Satellite Systems; 1.2 Cognitive Satellite Systems; About the Editors; List of figures; Acronyms; Chapter 1: Multibeam joint detection; 1.1 Introduction; 1.1.1 Signal description; 1.1.1.1 Beam radiation pattern; 1.1.1.2 Fading; 1.1.2 Overview of multibeam techniques; 1.2 Theoretical performance limits; 1.2.1 Sum rate; 1.2.1.1 High SNR; 1.2.1.2 Low SNR; 1.2.1.3 Numerical example; 1.2.2 Outage capacity
1.2.2.1 High SNR1.2.2.2 Numerical example; 1.3 Multibeam processing: linear and nonlinear joint detection; 1.3.1 Joint detection algorithms; 1.3.1.1 Linear detectors; 1.3.1.2 Nonlinear detectors; 1.3.1.3 Numerical example; 1.3.2 IDD Techniques; 1.3.3 Complexity considerations; 1.4 Practical impairments; 1.4.1 Imperfect channel estimation; 1.4.1.1 Review on channel estimation techniques; 1.4.1.2 Asynchronism in the return link; 1.4.1.3 Performance with imperfect channel estimation; 1.4.2 Limitations of the feeder link; 1.5 Conclusions; References
Chapter 2: High-performance random access schemes2.1 Introduction; 2.2 Key terrestrial RA techniques; 2.3 RA Techniques for satellite networks; 2.3.1 Slotted RA techniques; 2.3.1.1 From (diversity) slotted ALOHA to CRDSA; 2.3.1.2 CRDSA practical implementation issues; 2.3.1.3 Review of other slotted RA techniques for satellite; 2.3.2 Unslotted RA techniques; 2.3.2.1 Enhanced SSA; 2.3.2.2 MMSe plus ESSA; 2.3.2.3 Asynchronous contention resolution diversity ALOHA; 2.3.2.4 Unslotted RA implementation aspects; 2.3.3 Congestion control in RA; 2.4 RA Capacity
2.4.1 Capacity bounds for spread-spectrum RA2.4.2 Capacity bounds for non-spread-spectrum RA; 2.5 Systems and standards; 2.6 Summary and future research perspectives; References; Chapter 3: Multibeam joint precoding: frame-based design; 3.1 Introduction; 3.1.1 Precoding and beamforming in the satellite context; 3.1.2 Precoding over satellite: a standardization perspective; 3.1.3 Practical considerations; 3.1.4 Frame-based precoding: a multigroupmulticast approach; 3.2 System and channel model; 3.2.1 Multicast channel model; 3.2.2 Equivalent channel model; 3.2.3 Multibeam satellite channel
3.2.4 Payload phase errors3.2.4.1 Sensitivity to phase offsets; 3.2.4.2 Imperfect CSI estimation; 3.2.4.3 Outdated CSI; 3.2.5 Feeder link; 3.3 Frame-based precoding design; 3.3.1 Unicast multibeam precoding; 3.3.2 Block-SVD precoding; 3.3.3 Heuristic multicast aware MMSE precoding; 3.3.4 Optimal multigroup multicast precoding; 3.4 User selection for frame-based precoding; 3.4.1 Maximum channel norm selection; 3.4.2 Scheduling based on geographic user clusters; 3.4.2.1 Geographic user clustering; 3.4.3 Semi-parallel user selection; 3.4.4 Multicast aware user scheduling
3.5 Performance evaluation of selected methods
Record Nr. UNINA-9910788105403321
Amsterdam, [Netherlands] : , : Academic Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cooperative and cognitive satellite systems / / edited by Symeon Chatzinotas, Björn Ottersten, Riccardo De Gaudenzi ; contributors, Nader Alagha [and fifty-two others]
Cooperative and cognitive satellite systems / / edited by Symeon Chatzinotas, Björn Ottersten, Riccardo De Gaudenzi ; contributors, Nader Alagha [and fifty-two others]
Pubbl/distr/stampa Amsterdam, [Netherlands] : , : Academic Press, , 2015
Descrizione fisica 1 online resource (542 p.)
Disciplina 621.3825
Soggetto topico Artificial satellites in telecommunication
Multiuser detection (Telecommunication)
Cognitive radio networks
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Cooperative and Cognitive Satellite Systems; Copyright ; Contents; List of contributors; Preface; Cooperative and cognitive satellite systems; 1 Introduction; 1.1 Cooperative Satellite Systems; 1.2 Cognitive Satellite Systems; About the Editors; List of figures; Acronyms; Chapter 1: Multibeam joint detection; 1.1 Introduction; 1.1.1 Signal description; 1.1.1.1 Beam radiation pattern; 1.1.1.2 Fading; 1.1.2 Overview of multibeam techniques; 1.2 Theoretical performance limits; 1.2.1 Sum rate; 1.2.1.1 High SNR; 1.2.1.2 Low SNR; 1.2.1.3 Numerical example; 1.2.2 Outage capacity
1.2.2.1 High SNR1.2.2.2 Numerical example; 1.3 Multibeam processing: linear and nonlinear joint detection; 1.3.1 Joint detection algorithms; 1.3.1.1 Linear detectors; 1.3.1.2 Nonlinear detectors; 1.3.1.3 Numerical example; 1.3.2 IDD Techniques; 1.3.3 Complexity considerations; 1.4 Practical impairments; 1.4.1 Imperfect channel estimation; 1.4.1.1 Review on channel estimation techniques; 1.4.1.2 Asynchronism in the return link; 1.4.1.3 Performance with imperfect channel estimation; 1.4.2 Limitations of the feeder link; 1.5 Conclusions; References
Chapter 2: High-performance random access schemes2.1 Introduction; 2.2 Key terrestrial RA techniques; 2.3 RA Techniques for satellite networks; 2.3.1 Slotted RA techniques; 2.3.1.1 From (diversity) slotted ALOHA to CRDSA; 2.3.1.2 CRDSA practical implementation issues; 2.3.1.3 Review of other slotted RA techniques for satellite; 2.3.2 Unslotted RA techniques; 2.3.2.1 Enhanced SSA; 2.3.2.2 MMSe plus ESSA; 2.3.2.3 Asynchronous contention resolution diversity ALOHA; 2.3.2.4 Unslotted RA implementation aspects; 2.3.3 Congestion control in RA; 2.4 RA Capacity
2.4.1 Capacity bounds for spread-spectrum RA2.4.2 Capacity bounds for non-spread-spectrum RA; 2.5 Systems and standards; 2.6 Summary and future research perspectives; References; Chapter 3: Multibeam joint precoding: frame-based design; 3.1 Introduction; 3.1.1 Precoding and beamforming in the satellite context; 3.1.2 Precoding over satellite: a standardization perspective; 3.1.3 Practical considerations; 3.1.4 Frame-based precoding: a multigroupmulticast approach; 3.2 System and channel model; 3.2.1 Multicast channel model; 3.2.2 Equivalent channel model; 3.2.3 Multibeam satellite channel
3.2.4 Payload phase errors3.2.4.1 Sensitivity to phase offsets; 3.2.4.2 Imperfect CSI estimation; 3.2.4.3 Outdated CSI; 3.2.5 Feeder link; 3.3 Frame-based precoding design; 3.3.1 Unicast multibeam precoding; 3.3.2 Block-SVD precoding; 3.3.3 Heuristic multicast aware MMSE precoding; 3.3.4 Optimal multigroup multicast precoding; 3.4 User selection for frame-based precoding; 3.4.1 Maximum channel norm selection; 3.4.2 Scheduling based on geographic user clusters; 3.4.2.1 Geographic user clustering; 3.4.3 Semi-parallel user selection; 3.4.4 Multicast aware user scheduling
3.5 Performance evaluation of selected methods
Record Nr. UNINA-9910817329603321
Amsterdam, [Netherlands] : , : Academic Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Signal Processing for Joint Radar Communications
Signal Processing for Joint Radar Communications
Autore Mishra Kumar Vijay
Edizione [1st ed.]
Pubbl/distr/stampa John Wiley & Sons, Inc, 2024
Descrizione fisica 1 online resource (451 pages)
Disciplina 621.3822
Altri autori (Persone) ShankarM. R. Bhavani
OtterstenBjörn
SwindlehurstA. Lee
Collana IEEE Press Series
Soggetto topico Radar
Signal processing
ISBN 9781119795544
1119795540
9781119795568
1119795567
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Editors -- List of Contributors -- Foreword -- Preface -- Acknowledgments -- Part I Fundamental Limits and Background -- Chapter 1 A Signal Processing Outlook Toward Joint Radar‐Communications -- 1.1 Introduction -- 1.2 Policy and Licensing Issues -- 1.3 Legal Challenges -- 1.4 Agency‐Driven Projects -- 1.5 Channel Considerations -- 1.5.1 cmWave vs mmWave -- 1.5.2 Toward THz Band -- 1.5.3 Communications Channel -- 1.5.4 Radar Channel -- 1.5.5 Channel‐Sharing Topologies -- 1.6 JRC Coexistence -- 1.6.1 Communications Performance Criteria -- 1.6.2 Radar Performance Criteria -- 1.6.3 Interference Mitigation -- 1.6.3.1 Receiver Techniques -- 1.6.3.2 Transmitter Techniques -- 1.7 JRC Co‐Design -- 1.7.1 JRC Performance Criteria -- 1.7.2 Radar‐Centric Waveform Design -- 1.7.3 Communications‐Centric Waveform Design -- 1.7.4 Joint Coding -- 1.7.5 Carrier Exploitation -- 1.8 Emerging JRC Applications -- 1.9 Open Problems and Summary -- References -- Chapter 2 Principles of Radar‐Centric Dual‐Function Radar‐Communication Systems -- 2.1 Background -- 2.2 DFRC System Model -- 2.2.1 Resources and Performance Limits -- 2.2.1.1 Radar Performance -- 2.2.1.2 Communications Performance -- 2.2.1.3 DFRC Performance Tradeoff -- 2.2.2 Radar Transmit Signal Model -- 2.2.3 DFRC Transmit Signal Model -- 2.3 DFRC Using Fixed Radar Waveforms -- 2.3.1 DFRC Using Beampattern Modulation -- 2.3.1.1 Beampattern Amplitude Modulation -- 2.3.1.2 Beampattern Phase Modulation -- 2.3.1.3 Beampattern QAM Modulation -- 2.3.2 DFRC Via Waveform Permutation -- 2.3.2.1 Illustrative Example -- 2.4 DFRC Using Modulated Radar Waveforms -- 2.4.1 DFRC Via Intended Modulation on Pulse (IMOP) -- 2.4.2 CPM‐Embedded DFRC -- 2.4.3 DFRC Using FH Waveforms -- 2.5 DFRC Using Index Modulation -- 2.5.1 DFRC by Waveform Selection.
2.5.2 DFRC by Antenna Selection -- 2.5.3 FH‐based DFRC Via FH Index Modulation -- 2.5.4 OFDM‐based DFRC Using Index Modulation -- 2.6 Challenges and Future Trends -- References -- Chapter 3 Interference, Clutter, and Jamming Suppression in Joint Radar-Communications Systems - Coordinated and Uncoordinated Designs -- 3.1 Introduction -- 3.1.1 Notations -- 3.2 Joint Design of Coordinated Joint Radar-Communications Systems -- 3.2.1 System Description -- 3.2.1.1 Radar Signal Model -- 3.2.1.2 Communication Signal Model -- 3.2.1.3 Moving Targets -- 3.2.1.4 Static Targets -- 3.2.2 Joint Design Formulations -- 3.2.2.1 Joint Design for Moving Targets -- 3.2.2.2 Joint Design for Static Targets -- 3.3 Interference Suppression in Uncoordinated Joint Radar-Communications Systems -- 3.3.1 System Description -- 3.3.1.1 Radar Signal Model -- 3.3.1.2 Communication Signal Model -- 3.3.1.3 Signal Processing at Radar Receiver -- 3.3.1.4 Radar Signal Component -- 3.3.1.5 Communication Signal Component -- 3.3.2 Optimization and Neural Network Approaches -- 3.3.2.1 Problem Formulation -- 3.3.2.2 Alternating Direction Method of Multipliers -- 3.3.2.3 Deep Unfolded Neural Network -- 3.3.3 Discussion -- 3.3.3.1 Simulations -- 3.3.3.2 Communication‐centric Example -- 3.4 Conclusion -- References -- Chapter 4 Beamforming and Interference Management in Joint Radar-Communications Systems -- 4.1 Introduction -- 4.2 System Overview -- 4.2.1 Radio Channel Properties -- 4.2.2 Cooperation in JRC -- 4.3 JRC Beamforming -- 4.3.1 Radar‐centric Approach -- 4.3.1.1 Power Modulation -- 4.3.1.2 Phase Modulation -- 4.3.2 Joint Transmit Beamforming -- 4.3.3 Receiver Processing -- 4.4 Multicarrier Waveforms for JRC -- 4.4.1 OFDM Design Example -- 4.4.2 MC‐DS‐CDMA Design Example -- 4.5 Precoder Design for Multiple JRC Users -- 4.5.1 Cooperative Active/Passive Sensing for Multiple Users.
4.5.1.1 Communication Signal as Useful Energy -- 4.5.1.2 Ignoring Communication Signal -- 4.5.1.3 Communication Signal as Interference -- 4.5.2 Interference Management for Multiple JRC Users -- 4.5.2.1 Null Space-based Precoder Design -- 4.5.2.2 Precoder-Decoder Co‐design -- 4.5.2.3 Awareness, Cognition, and Cooperation -- 4.6 Summary -- List of Symbols -- References -- Chapter 5 Information Theoretic Aspects of Joint Sensing and Communications -- 5.1 Introduction -- 5.2 Information Theoretic Model -- 5.3 Fundamental Trade‐off Between Sensing and Communications -- 5.3.1 Capacity-Distortion-Cost Trade‐off -- 5.3.2 Numerical Method for Optimization -- 5.3.3 Numerical Examples -- 5.3.3.1 Binary Channels with Multiplicative Bernoulli State -- 5.3.3.2 Rayleigh Fading Channels -- 5.4 Application to Joint Radar and Communications -- 5.4.1 System Model -- 5.4.2 Maximum Likelihood Estimator -- 5.4.3 Cramér-Rao Lower Bound -- 5.4.4 Simulation Results -- 5.5 Concluding Remarks -- Acknowledgment -- References -- Part II Physical‐Layer Signal Processing -- Chapter 6 Radar‐aided Millimeter Wave Communication -- 6.1 Motivation for Radar‐aided Communication -- 6.1.1 Sensing on the Wireless Infrastructure -- 6.1.2 Sensing at the User Equipment (UE) -- 6.2 Radar‐aided Communication Exploiting Position Information -- 6.2.1 MmWave Beamtraining Using a BS Mounted Radar -- 6.3 Radar‐aided Communication Exploiting Covariance Information -- 6.3.1 Measuring Radar and Communication Congruence -- 6.3.2 Radar Covariance Estimation with a Passive Radar at the BS -- 6.3.3 Learning Mismatches Between Radar and Communication Channels -- 6.3.3.1 Learning the Covariance Vector -- 6.3.3.2 Learning the Dominant Eigenvectors -- 6.3.3.3 Learning the APS -- 6.4 Challenges and Opportunities -- References.
Chapter 7 Design of Constant‐Envelope Radar Signals Under Multiple Spectral Constraints -- 7.1 Introduction -- 7.1.1 Notations -- 7.2 System Model and Problem Formulation -- 7.2.1 System Model -- 7.2.2 Code Design Optimization Problem -- 7.3 Radar Waveform Design Procedure -- 7.3.1 Code Phase Optimization -- 7.3.2 Solution Technique for ¯pd,x(n) -- 7.3.2.1 Code Amplitude Optimization -- 7.3.2.2 Code Phase Optimization -- 7.3.3 Heuristic Methods for Algorithm Initialization -- 7.3.3.1 Relaxation and Randomization‐based Approach -- 7.3.3.2 Free‐Band Capitalization Code Design -- 7.4 Performance Analysis -- 7.5 Conclusion -- 7.A Derivation of ΨM -- 7.A Derivation of Equation (7.19) -- 7.A Characterization of the Objective in pxd(n) -- 7.A Derivation of the Feasible Set of pxd(n) -- 7.A Proof of Proposition 7.1 -- 7.A Proof of Corollary 7.1 -- References -- Chapter 8 Spectrum Sharing Between MIMO Radar and MIMO Communication Systems -- 8.1 Introduction -- 8.1.1 Literature Review -- 8.1.1.1 Noncooperative Spectrum Sharing Methods -- 8.1.1.2 Cooperative Spectrum Sharing Methods -- 8.2 MIMO Radars Using Sparse Sensing -- 8.2.1 MIMO‐MC Radar Using Random Unitary Matrix -- 8.3 Coexistence System Model -- 8.3.1 Transmitted Signals -- 8.3.2 Fading -- 8.3.3 Channel State Information (CSI) -- 8.3.4 The Radar Mode of Operation -- 8.4 Cooperative Spectrum Sharing -- 8.4.1 Interference at the Communication Receiver -- 8.4.2 Interference at the MIMO‐MC Radar -- 8.4.3 Formulating the Design Problem at the Control Center -- 8.4.4 Solution to the Spectrum Sharing Problem Using Alternating Optimization -- 8.4.4.1 The Alternating Iteration w.r.t. {Rxl} -- 8.4.4.2 The Alternating Iteration w.r.t. Ω -- 8.4.4.3 The Alternating Iteration w.r.t. Φ -- 8.4.5 Insight into the Feasibility and Solutions of the Spectrum Sharing Problem -- 8.4.5.1 Feasibility.
8.4.5.2 The Rank of the Solutions Φ -- 8.4.6 Constant‐rate Communication Transmission for Spectrum Sharing -- 8.4.7 Traditional MIMO Radars for Spectrum Sharing -- 8.5 Numerical Results -- 8.5.1 The Radar Transmit Beampattern and the MUSIC Spectrum -- 8.5.2 Comparison of Different Levels of Cooperation -- 8.5.3 Comparison Between Adaptive and Constant‐rate Communication Transmissions -- 8.5.4 Comparison Between MIMO‐MC Radars and Traditional MIMO Radars -- 8.6 Conclusions -- References -- Chapter 9 Performance and Design for Cooperative MIMO Radar and MIMO Communications -- 9.1 Introduction and Literature Review -- 9.1.1 Previous DFRC Approaches -- 9.1.1.1 Integrated Waveform Design -- 9.1.1.2 Beamforming -- 9.1.2 Previous CERC Approaches -- 9.1.2.1 Resource Scheduling -- 9.1.2.2 Transmitter Design -- 9.1.2.3 Receiver Design -- 9.1.2.4 Transmitter and Receiver Co‐design -- 9.1.3 Cooperative CERC Systems -- 9.1.4 Overview of Remainder of the Chapter -- 9.2 Cooperative CERC System Model -- 9.2.1 Received Radar Signals -- 9.2.2 Received Communications Signals -- 9.3 Hybrid Active-Passive Cooperative CERC MIMO Radar System -- 9.3.1 Target Detection -- 9.3.2 Target Localization -- 9.3.3 Comparison with Noncooperative Case -- 9.3.3.1 Gain for Radar Target Detection -- 9.3.3.2 Gain for Radar Parameter Estimation -- 9.4 Radar‐aided MIMO Communications in Cooperative CERC System -- 9.4.1 Mutual Information -- 9.4.2 Comparison with Noncooperative Cases -- 9.5 Cooperative Radar and Communications System Co‐design -- 9.5.1 Power Allocation Based on PD and MI -- 9.5.2 Power Allocation Based on CRB and MI -- 9.6 Conclusions -- References -- Part III Networking and Hardware Implementations -- Chapter 10 Frequency‐Hopping MIMO Radar‐based Data Communications -- 10.1 Introduction -- 10.2 System Diagram and Signal Model -- 10.2.1 Signal Model of FH‐MIMO Radar.
10.2.2 Information Embedding at Radar.
Record Nr. UNINA-9911020199103321
Mishra Kumar Vijay  
John Wiley & Sons, Inc, 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui