Cooperative and cognitive satellite systems / / edited by Symeon Chatzinotas, Björn Ottersten, Riccardo De Gaudenzi ; contributors, Nader Alagha [and fifty-two others]
| Cooperative and cognitive satellite systems / / edited by Symeon Chatzinotas, Björn Ottersten, Riccardo De Gaudenzi ; contributors, Nader Alagha [and fifty-two others] |
| Pubbl/distr/stampa | Amsterdam, [Netherlands] : , : Academic Press, , 2015 |
| Descrizione fisica | 1 online resource (542 p.) |
| Disciplina | 621.3825 |
| Soggetto topico |
Artificial satellites in telecommunication
Multiuser detection (Telecommunication) Cognitive radio networks |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Cooperative and Cognitive Satellite Systems; Copyright ; Contents; List of contributors; Preface; Cooperative and cognitive satellite systems; 1 Introduction; 1.1 Cooperative Satellite Systems; 1.2 Cognitive Satellite Systems; About the Editors; List of figures; Acronyms; Chapter 1: Multibeam joint detection; 1.1 Introduction; 1.1.1 Signal description; 1.1.1.1 Beam radiation pattern; 1.1.1.2 Fading; 1.1.2 Overview of multibeam techniques; 1.2 Theoretical performance limits; 1.2.1 Sum rate; 1.2.1.1 High SNR; 1.2.1.2 Low SNR; 1.2.1.3 Numerical example; 1.2.2 Outage capacity
1.2.2.1 High SNR1.2.2.2 Numerical example; 1.3 Multibeam processing: linear and nonlinear joint detection; 1.3.1 Joint detection algorithms; 1.3.1.1 Linear detectors; 1.3.1.2 Nonlinear detectors; 1.3.1.3 Numerical example; 1.3.2 IDD Techniques; 1.3.3 Complexity considerations; 1.4 Practical impairments; 1.4.1 Imperfect channel estimation; 1.4.1.1 Review on channel estimation techniques; 1.4.1.2 Asynchronism in the return link; 1.4.1.3 Performance with imperfect channel estimation; 1.4.2 Limitations of the feeder link; 1.5 Conclusions; References Chapter 2: High-performance random access schemes2.1 Introduction; 2.2 Key terrestrial RA techniques; 2.3 RA Techniques for satellite networks; 2.3.1 Slotted RA techniques; 2.3.1.1 From (diversity) slotted ALOHA to CRDSA; 2.3.1.2 CRDSA practical implementation issues; 2.3.1.3 Review of other slotted RA techniques for satellite; 2.3.2 Unslotted RA techniques; 2.3.2.1 Enhanced SSA; 2.3.2.2 MMSe plus ESSA; 2.3.2.3 Asynchronous contention resolution diversity ALOHA; 2.3.2.4 Unslotted RA implementation aspects; 2.3.3 Congestion control in RA; 2.4 RA Capacity 2.4.1 Capacity bounds for spread-spectrum RA2.4.2 Capacity bounds for non-spread-spectrum RA; 2.5 Systems and standards; 2.6 Summary and future research perspectives; References; Chapter 3: Multibeam joint precoding: frame-based design; 3.1 Introduction; 3.1.1 Precoding and beamforming in the satellite context; 3.1.2 Precoding over satellite: a standardization perspective; 3.1.3 Practical considerations; 3.1.4 Frame-based precoding: a multigroupmulticast approach; 3.2 System and channel model; 3.2.1 Multicast channel model; 3.2.2 Equivalent channel model; 3.2.3 Multibeam satellite channel 3.2.4 Payload phase errors3.2.4.1 Sensitivity to phase offsets; 3.2.4.2 Imperfect CSI estimation; 3.2.4.3 Outdated CSI; 3.2.5 Feeder link; 3.3 Frame-based precoding design; 3.3.1 Unicast multibeam precoding; 3.3.2 Block-SVD precoding; 3.3.3 Heuristic multicast aware MMSE precoding; 3.3.4 Optimal multigroup multicast precoding; 3.4 User selection for frame-based precoding; 3.4.1 Maximum channel norm selection; 3.4.2 Scheduling based on geographic user clusters; 3.4.2.1 Geographic user clustering; 3.4.3 Semi-parallel user selection; 3.4.4 Multicast aware user scheduling 3.5 Performance evaluation of selected methods |
| Record Nr. | UNINA-9910788105403321 |
| Amsterdam, [Netherlands] : , : Academic Press, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Cooperative and cognitive satellite systems / / edited by Symeon Chatzinotas, Björn Ottersten, Riccardo De Gaudenzi ; contributors, Nader Alagha [and fifty-two others]
| Cooperative and cognitive satellite systems / / edited by Symeon Chatzinotas, Björn Ottersten, Riccardo De Gaudenzi ; contributors, Nader Alagha [and fifty-two others] |
| Pubbl/distr/stampa | Amsterdam, [Netherlands] : , : Academic Press, , 2015 |
| Descrizione fisica | 1 online resource (542 p.) |
| Disciplina | 621.3825 |
| Soggetto topico |
Artificial satellites in telecommunication
Multiuser detection (Telecommunication) Cognitive radio networks |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Cooperative and Cognitive Satellite Systems; Copyright ; Contents; List of contributors; Preface; Cooperative and cognitive satellite systems; 1 Introduction; 1.1 Cooperative Satellite Systems; 1.2 Cognitive Satellite Systems; About the Editors; List of figures; Acronyms; Chapter 1: Multibeam joint detection; 1.1 Introduction; 1.1.1 Signal description; 1.1.1.1 Beam radiation pattern; 1.1.1.2 Fading; 1.1.2 Overview of multibeam techniques; 1.2 Theoretical performance limits; 1.2.1 Sum rate; 1.2.1.1 High SNR; 1.2.1.2 Low SNR; 1.2.1.3 Numerical example; 1.2.2 Outage capacity
1.2.2.1 High SNR1.2.2.2 Numerical example; 1.3 Multibeam processing: linear and nonlinear joint detection; 1.3.1 Joint detection algorithms; 1.3.1.1 Linear detectors; 1.3.1.2 Nonlinear detectors; 1.3.1.3 Numerical example; 1.3.2 IDD Techniques; 1.3.3 Complexity considerations; 1.4 Practical impairments; 1.4.1 Imperfect channel estimation; 1.4.1.1 Review on channel estimation techniques; 1.4.1.2 Asynchronism in the return link; 1.4.1.3 Performance with imperfect channel estimation; 1.4.2 Limitations of the feeder link; 1.5 Conclusions; References Chapter 2: High-performance random access schemes2.1 Introduction; 2.2 Key terrestrial RA techniques; 2.3 RA Techniques for satellite networks; 2.3.1 Slotted RA techniques; 2.3.1.1 From (diversity) slotted ALOHA to CRDSA; 2.3.1.2 CRDSA practical implementation issues; 2.3.1.3 Review of other slotted RA techniques for satellite; 2.3.2 Unslotted RA techniques; 2.3.2.1 Enhanced SSA; 2.3.2.2 MMSe plus ESSA; 2.3.2.3 Asynchronous contention resolution diversity ALOHA; 2.3.2.4 Unslotted RA implementation aspects; 2.3.3 Congestion control in RA; 2.4 RA Capacity 2.4.1 Capacity bounds for spread-spectrum RA2.4.2 Capacity bounds for non-spread-spectrum RA; 2.5 Systems and standards; 2.6 Summary and future research perspectives; References; Chapter 3: Multibeam joint precoding: frame-based design; 3.1 Introduction; 3.1.1 Precoding and beamforming in the satellite context; 3.1.2 Precoding over satellite: a standardization perspective; 3.1.3 Practical considerations; 3.1.4 Frame-based precoding: a multigroupmulticast approach; 3.2 System and channel model; 3.2.1 Multicast channel model; 3.2.2 Equivalent channel model; 3.2.3 Multibeam satellite channel 3.2.4 Payload phase errors3.2.4.1 Sensitivity to phase offsets; 3.2.4.2 Imperfect CSI estimation; 3.2.4.3 Outdated CSI; 3.2.5 Feeder link; 3.3 Frame-based precoding design; 3.3.1 Unicast multibeam precoding; 3.3.2 Block-SVD precoding; 3.3.3 Heuristic multicast aware MMSE precoding; 3.3.4 Optimal multigroup multicast precoding; 3.4 User selection for frame-based precoding; 3.4.1 Maximum channel norm selection; 3.4.2 Scheduling based on geographic user clusters; 3.4.2.1 Geographic user clustering; 3.4.3 Semi-parallel user selection; 3.4.4 Multicast aware user scheduling 3.5 Performance evaluation of selected methods |
| Record Nr. | UNINA-9910817329603321 |
| Amsterdam, [Netherlands] : , : Academic Press, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Signal Processing for Joint Radar Communications
| Signal Processing for Joint Radar Communications |
| Autore | Mishra Kumar Vijay |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | John Wiley & Sons, Inc, 2024 |
| Descrizione fisica | 1 online resource (451 pages) |
| Disciplina | 621.3822 |
| Altri autori (Persone) |
ShankarM. R. Bhavani
OtterstenBjörn SwindlehurstA. Lee |
| Collana | IEEE Press Series |
| Soggetto topico |
Radar
Signal processing |
| ISBN |
9781119795544
1119795540 9781119795568 1119795567 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- List of Editors -- List of Contributors -- Foreword -- Preface -- Acknowledgments -- Part I Fundamental Limits and Background -- Chapter 1 A Signal Processing Outlook Toward Joint Radar‐Communications -- 1.1 Introduction -- 1.2 Policy and Licensing Issues -- 1.3 Legal Challenges -- 1.4 Agency‐Driven Projects -- 1.5 Channel Considerations -- 1.5.1 cmWave vs mmWave -- 1.5.2 Toward THz Band -- 1.5.3 Communications Channel -- 1.5.4 Radar Channel -- 1.5.5 Channel‐Sharing Topologies -- 1.6 JRC Coexistence -- 1.6.1 Communications Performance Criteria -- 1.6.2 Radar Performance Criteria -- 1.6.3 Interference Mitigation -- 1.6.3.1 Receiver Techniques -- 1.6.3.2 Transmitter Techniques -- 1.7 JRC Co‐Design -- 1.7.1 JRC Performance Criteria -- 1.7.2 Radar‐Centric Waveform Design -- 1.7.3 Communications‐Centric Waveform Design -- 1.7.4 Joint Coding -- 1.7.5 Carrier Exploitation -- 1.8 Emerging JRC Applications -- 1.9 Open Problems and Summary -- References -- Chapter 2 Principles of Radar‐Centric Dual‐Function Radar‐Communication Systems -- 2.1 Background -- 2.2 DFRC System Model -- 2.2.1 Resources and Performance Limits -- 2.2.1.1 Radar Performance -- 2.2.1.2 Communications Performance -- 2.2.1.3 DFRC Performance Tradeoff -- 2.2.2 Radar Transmit Signal Model -- 2.2.3 DFRC Transmit Signal Model -- 2.3 DFRC Using Fixed Radar Waveforms -- 2.3.1 DFRC Using Beampattern Modulation -- 2.3.1.1 Beampattern Amplitude Modulation -- 2.3.1.2 Beampattern Phase Modulation -- 2.3.1.3 Beampattern QAM Modulation -- 2.3.2 DFRC Via Waveform Permutation -- 2.3.2.1 Illustrative Example -- 2.4 DFRC Using Modulated Radar Waveforms -- 2.4.1 DFRC Via Intended Modulation on Pulse (IMOP) -- 2.4.2 CPM‐Embedded DFRC -- 2.4.3 DFRC Using FH Waveforms -- 2.5 DFRC Using Index Modulation -- 2.5.1 DFRC by Waveform Selection.
2.5.2 DFRC by Antenna Selection -- 2.5.3 FH‐based DFRC Via FH Index Modulation -- 2.5.4 OFDM‐based DFRC Using Index Modulation -- 2.6 Challenges and Future Trends -- References -- Chapter 3 Interference, Clutter, and Jamming Suppression in Joint Radar-Communications Systems - Coordinated and Uncoordinated Designs -- 3.1 Introduction -- 3.1.1 Notations -- 3.2 Joint Design of Coordinated Joint Radar-Communications Systems -- 3.2.1 System Description -- 3.2.1.1 Radar Signal Model -- 3.2.1.2 Communication Signal Model -- 3.2.1.3 Moving Targets -- 3.2.1.4 Static Targets -- 3.2.2 Joint Design Formulations -- 3.2.2.1 Joint Design for Moving Targets -- 3.2.2.2 Joint Design for Static Targets -- 3.3 Interference Suppression in Uncoordinated Joint Radar-Communications Systems -- 3.3.1 System Description -- 3.3.1.1 Radar Signal Model -- 3.3.1.2 Communication Signal Model -- 3.3.1.3 Signal Processing at Radar Receiver -- 3.3.1.4 Radar Signal Component -- 3.3.1.5 Communication Signal Component -- 3.3.2 Optimization and Neural Network Approaches -- 3.3.2.1 Problem Formulation -- 3.3.2.2 Alternating Direction Method of Multipliers -- 3.3.2.3 Deep Unfolded Neural Network -- 3.3.3 Discussion -- 3.3.3.1 Simulations -- 3.3.3.2 Communication‐centric Example -- 3.4 Conclusion -- References -- Chapter 4 Beamforming and Interference Management in Joint Radar-Communications Systems -- 4.1 Introduction -- 4.2 System Overview -- 4.2.1 Radio Channel Properties -- 4.2.2 Cooperation in JRC -- 4.3 JRC Beamforming -- 4.3.1 Radar‐centric Approach -- 4.3.1.1 Power Modulation -- 4.3.1.2 Phase Modulation -- 4.3.2 Joint Transmit Beamforming -- 4.3.3 Receiver Processing -- 4.4 Multicarrier Waveforms for JRC -- 4.4.1 OFDM Design Example -- 4.4.2 MC‐DS‐CDMA Design Example -- 4.5 Precoder Design for Multiple JRC Users -- 4.5.1 Cooperative Active/Passive Sensing for Multiple Users. 4.5.1.1 Communication Signal as Useful Energy -- 4.5.1.2 Ignoring Communication Signal -- 4.5.1.3 Communication Signal as Interference -- 4.5.2 Interference Management for Multiple JRC Users -- 4.5.2.1 Null Space-based Precoder Design -- 4.5.2.2 Precoder-Decoder Co‐design -- 4.5.2.3 Awareness, Cognition, and Cooperation -- 4.6 Summary -- List of Symbols -- References -- Chapter 5 Information Theoretic Aspects of Joint Sensing and Communications -- 5.1 Introduction -- 5.2 Information Theoretic Model -- 5.3 Fundamental Trade‐off Between Sensing and Communications -- 5.3.1 Capacity-Distortion-Cost Trade‐off -- 5.3.2 Numerical Method for Optimization -- 5.3.3 Numerical Examples -- 5.3.3.1 Binary Channels with Multiplicative Bernoulli State -- 5.3.3.2 Rayleigh Fading Channels -- 5.4 Application to Joint Radar and Communications -- 5.4.1 System Model -- 5.4.2 Maximum Likelihood Estimator -- 5.4.3 Cramér-Rao Lower Bound -- 5.4.4 Simulation Results -- 5.5 Concluding Remarks -- Acknowledgment -- References -- Part II Physical‐Layer Signal Processing -- Chapter 6 Radar‐aided Millimeter Wave Communication -- 6.1 Motivation for Radar‐aided Communication -- 6.1.1 Sensing on the Wireless Infrastructure -- 6.1.2 Sensing at the User Equipment (UE) -- 6.2 Radar‐aided Communication Exploiting Position Information -- 6.2.1 MmWave Beamtraining Using a BS Mounted Radar -- 6.3 Radar‐aided Communication Exploiting Covariance Information -- 6.3.1 Measuring Radar and Communication Congruence -- 6.3.2 Radar Covariance Estimation with a Passive Radar at the BS -- 6.3.3 Learning Mismatches Between Radar and Communication Channels -- 6.3.3.1 Learning the Covariance Vector -- 6.3.3.2 Learning the Dominant Eigenvectors -- 6.3.3.3 Learning the APS -- 6.4 Challenges and Opportunities -- References. Chapter 7 Design of Constant‐Envelope Radar Signals Under Multiple Spectral Constraints -- 7.1 Introduction -- 7.1.1 Notations -- 7.2 System Model and Problem Formulation -- 7.2.1 System Model -- 7.2.2 Code Design Optimization Problem -- 7.3 Radar Waveform Design Procedure -- 7.3.1 Code Phase Optimization -- 7.3.2 Solution Technique for ¯pd,x(n) -- 7.3.2.1 Code Amplitude Optimization -- 7.3.2.2 Code Phase Optimization -- 7.3.3 Heuristic Methods for Algorithm Initialization -- 7.3.3.1 Relaxation and Randomization‐based Approach -- 7.3.3.2 Free‐Band Capitalization Code Design -- 7.4 Performance Analysis -- 7.5 Conclusion -- 7.A Derivation of ΨM -- 7.A Derivation of Equation (7.19) -- 7.A Characterization of the Objective in pxd(n) -- 7.A Derivation of the Feasible Set of pxd(n) -- 7.A Proof of Proposition 7.1 -- 7.A Proof of Corollary 7.1 -- References -- Chapter 8 Spectrum Sharing Between MIMO Radar and MIMO Communication Systems -- 8.1 Introduction -- 8.1.1 Literature Review -- 8.1.1.1 Noncooperative Spectrum Sharing Methods -- 8.1.1.2 Cooperative Spectrum Sharing Methods -- 8.2 MIMO Radars Using Sparse Sensing -- 8.2.1 MIMO‐MC Radar Using Random Unitary Matrix -- 8.3 Coexistence System Model -- 8.3.1 Transmitted Signals -- 8.3.2 Fading -- 8.3.3 Channel State Information (CSI) -- 8.3.4 The Radar Mode of Operation -- 8.4 Cooperative Spectrum Sharing -- 8.4.1 Interference at the Communication Receiver -- 8.4.2 Interference at the MIMO‐MC Radar -- 8.4.3 Formulating the Design Problem at the Control Center -- 8.4.4 Solution to the Spectrum Sharing Problem Using Alternating Optimization -- 8.4.4.1 The Alternating Iteration w.r.t. {Rxl} -- 8.4.4.2 The Alternating Iteration w.r.t. Ω -- 8.4.4.3 The Alternating Iteration w.r.t. Φ -- 8.4.5 Insight into the Feasibility and Solutions of the Spectrum Sharing Problem -- 8.4.5.1 Feasibility. 8.4.5.2 The Rank of the Solutions Φ -- 8.4.6 Constant‐rate Communication Transmission for Spectrum Sharing -- 8.4.7 Traditional MIMO Radars for Spectrum Sharing -- 8.5 Numerical Results -- 8.5.1 The Radar Transmit Beampattern and the MUSIC Spectrum -- 8.5.2 Comparison of Different Levels of Cooperation -- 8.5.3 Comparison Between Adaptive and Constant‐rate Communication Transmissions -- 8.5.4 Comparison Between MIMO‐MC Radars and Traditional MIMO Radars -- 8.6 Conclusions -- References -- Chapter 9 Performance and Design for Cooperative MIMO Radar and MIMO Communications -- 9.1 Introduction and Literature Review -- 9.1.1 Previous DFRC Approaches -- 9.1.1.1 Integrated Waveform Design -- 9.1.1.2 Beamforming -- 9.1.2 Previous CERC Approaches -- 9.1.2.1 Resource Scheduling -- 9.1.2.2 Transmitter Design -- 9.1.2.3 Receiver Design -- 9.1.2.4 Transmitter and Receiver Co‐design -- 9.1.3 Cooperative CERC Systems -- 9.1.4 Overview of Remainder of the Chapter -- 9.2 Cooperative CERC System Model -- 9.2.1 Received Radar Signals -- 9.2.2 Received Communications Signals -- 9.3 Hybrid Active-Passive Cooperative CERC MIMO Radar System -- 9.3.1 Target Detection -- 9.3.2 Target Localization -- 9.3.3 Comparison with Noncooperative Case -- 9.3.3.1 Gain for Radar Target Detection -- 9.3.3.2 Gain for Radar Parameter Estimation -- 9.4 Radar‐aided MIMO Communications in Cooperative CERC System -- 9.4.1 Mutual Information -- 9.4.2 Comparison with Noncooperative Cases -- 9.5 Cooperative Radar and Communications System Co‐design -- 9.5.1 Power Allocation Based on PD and MI -- 9.5.2 Power Allocation Based on CRB and MI -- 9.6 Conclusions -- References -- Part III Networking and Hardware Implementations -- Chapter 10 Frequency‐Hopping MIMO Radar‐based Data Communications -- 10.1 Introduction -- 10.2 System Diagram and Signal Model -- 10.2.1 Signal Model of FH‐MIMO Radar. 10.2.2 Information Embedding at Radar. |
| Record Nr. | UNINA-9911020199103321 |
Mishra Kumar Vijay
|
||
| John Wiley & Sons, Inc, 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||