top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Plasma nanoscience : basic concepts and applications of deterministic nanofabrication / / Kostya Ostrikov
Plasma nanoscience : basic concepts and applications of deterministic nanofabrication / / Kostya Ostrikov
Autore Ostrikov K (Kostya)
Pubbl/distr/stampa Weinheim : , : Wiley-VCH Verlag GmbH & Co. KGaA, , [2008]
Descrizione fisica 1 online resource (566 p.)
Disciplina 530.44
Soggetto topico Low temperature plasmas
Nanostructured materials
Plasma engineering
ISBN 1-281-94721-0
9786611947217
3-527-62332-9
3-527-62331-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Plasma Nanoscience; Contents; Preface; Acronyms; 1 Introduction; 1.1 Main Concepts and Issues; 1.2 Self-Organized Nanoworld, Commonsense Science of the Small and Socio-Economic Push; 1.3 Nature's Plasma Nanofab and Nanotechnology Research Directions; 1.4 Deterministic Nanofabrication and Plasma Nanoscience; 1.5 Structure of the Monograph and Advice to the Reader; 2 What Makes Low-Temperature Plasmas a Versatile Nanotool?; 2.1 Basic Ideas and Major Issues; 2.2 Plasma Nanofabrication Concept; 2.3 Useful Plasma Features for Nanoscale Fabrication
2.4 Choice and Generation of Building and Working Units2.5 Effect of the Plasma Sheath; 2.6 How Plasmas Affect Elementary Surface Processes; 2.7 Concluding Remarks; 3 Specific Examples and Practical Framework; 3.1 Semiconducting Nanofilms and Nanostructures; 3.2 Carbon-Based Nanofilms and Nanostructures; 3.3 Practical Framework - Bridging Nine Orders of Magnitude; 3.4 Concluding Remarks; 4 Generation of Building and Working Units; 4.1 Species in Methane-Based Plasmas for Synthesis of Carbon Nanostructures; 4.1.1 Experimental Details; 4.1.2 Basic Assumptions of the Model
4.1.3 Particle and Power Balance in Plasma Discharge4.1.4 Densities of Neutral and Charged Species; 4.1.4.1 Effect of RF Power; 4.1.4.2 Effect of Argon and Methane Dilution; 4.1.5 Deposited Neutral and Ion Fluxes; 4.1.6 Most Important Points and Summary; 4.2 Species in Acetylene-Based Plasmas for Synthesis of Carbon Nanostructures; 4.2.1 Formulation of the Problem; 4.2.2 Number Densities of the Main Discharge Species; 4.2.3 Fluxes of Building and Working Units; 4.3 Nanocluster and Nanoparticle Building Units; 4.3.1 Nano-Sized Building Units from Reactive Plasmas
4.3.2 Nanoparticle Generation: Other Examples4.4 Concluding Remarks; 5 Transport, Manipulation and Deposition of Building and Working Units; 5.1 Microscopic Ion Fluxes During Nanoassembly Processes; 5.1.1 Formulation and Model; 5.1.2 Numerical Results; 5.1.3 Interpretation of Numerical Results; 5.2 Nanoparticle Manipulation in the Synthesis of Carbon Nanostructures; 5.2.1 Nanoparticle Manipulation: Experimental Results; 5.2.2 Nanoparticle Manipulation: Numerical Model; 5.3 Selected-Area Nanoparticle Deposition Onto Microstructured Surfaces; 5.3.1 Numerical Model and Simulation Parameters
5.3.2 Selected-Area Nanoparticle Deposition5.3.3 Practical Implementation Framework; 5.4 Electrostatic Nanoparticle Filter; 5.5 Concluding Remarks; 6 Surface Science of Plasma-Exposed Surfaces and Self-Organization Processes; 6.1 Synthesis of Self-Organizing Arrays of Quantum Dots: Objectives and Approach; 6.2 Initial Stage of Ge/Si Nanodot Formation Using Nanocluster Fluxes; 6.2.1 Physical Model and Numerical Details; 6.2.2 Physical Interpretation and Relevant Experimental Data; 6.3 Binary Si(x)C(1-x) Quantum Dot Systems: Initial Growth Stage
6.3.1 Adatom Fluxes at Initial Growth Stages of Si(x)C(1-x) Quantum Dots
Record Nr. UNINA-9910830407303321
Ostrikov K (Kostya)  
Weinheim : , : Wiley-VCH Verlag GmbH & Co. KGaA, , [2008]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plasma-aided nanofabrication [[electronic resource] ] : from plasma sources to nanoassembly / / Kostya (Ken) Ostrikov and Shuyan Xu
Plasma-aided nanofabrication [[electronic resource] ] : from plasma sources to nanoassembly / / Kostya (Ken) Ostrikov and Shuyan Xu
Autore Ostrikov K (Kostya)
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2007
Descrizione fisica 1 online resource (317 p.)
Disciplina 620.5
621.044
Altri autori (Persone) XuShuyan
Soggetto topico Low temperature plasmas
Manufacturing processes
Nanostructured materials
Plasma engineering
ISBN 1-281-08802-1
9786611088026
3-527-61155-X
3-527-61156-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Plasma-Aided Nanofabrication; Contents; Preface; 1 Introduction; 1.1 What is a Plasma?; 1.2 Relevant Issues of Nanoscience and Nanotechnology; 1.3 Plasma-Assisted Synthesis of Nanomaterials; 1.4 How to Choose the Right Plasma for Applications in Nanotechnology?; 1.5 Structure of the Monograph and Advice to the Reader; 2 Generation of Highly Uniform, High-Density Inductively Coupled Plasma; 2.1 Low-Frequency ICP with a Flat External Spiral Coil: Plasma Source and Diagnostic Equipment; 2.1.1 Plasma Source; 2.1.2 Diagnostics of Inductively Coupled Plasmas
3 Plasma Sources: Meeting the Demands of Nanotechnology3.1 Inductively Coupled Plasma Source with Internal Oscillating Currents: Concept and Experimental Verification; 3.1.1 Configuration of the IOCPS; 3.1.2 RF Power Deposition; 3.1.3 Plasma Parameters; 3.2 IOCPS: Stability and Mode Transitions; 3.2.1 Optical Emission; 3.2.2 Self-Transitions of the IOCPS Discharge Modes; 3.3 ICP-Assisted DC Magnetron Sputtering Device; 3.3.1 Enhancement of DC Magnetron Sputtering by an Inductively Coupled Plasma Source; 3.3.2 Mode Transitions in ICP-Assisted Magnetron Sputtering Device
3.4 Integrated Plasma-Aided Nanofabrication Facility3.5 Concluding Remarks; 4 Carbon-Based Nanostructures; 4.1 Growth of Carbon Nanostructures on Unheated Substrates; 4.1.1 Process Details; 4.1.2 Synthesis, Characterization, and Growth Kinetics; 4.2 Temperature-Controlled Regime; 4.3 Single-Crystalline Carbon Nanotips: Experiment; 4.4 Single-Crystalline Carbon Nanotips: ab initio Simulations; 4.4.1 Theoretical Background and Numerical Code; 4.4.2 Geometrical Stability of Carbon Nanotip Structures; 4.4.3 Electronic Properties of Carbon Nanotips
4.5 Plasma-Assisted Doping and Functionalization of Carbon Nanostructures4.5.1 Doping of Carbon-Based Nanostructures: Density Functional Theory Considerations; 4.5.2 Postprocessing of Carbon-Based Nanostructures: Experiments; 4.6 Synthesis of Carbon Nanowall-Like Structures; 5 Quantum Confinement Structures; 5.1 Plasma-Assisted Fabrication of AlN Quantum Dots; 5.2 Nanofabrication of Al(x)In(1-x)N Quantum Dots: Plasma-Aided Bandgap Control; 5.3 Plasma-Aided Nanofabrication of SiC Quantum Dot Arrays; 5.3.1 SiC Properties and Applications; 5.3.2 SiC Growth Modes: With and Without AlN Interlayer
5.3.3 Quest for Crystallinity and Nanopattern Uniformity
Record Nr. UNINA-9910144594603321
Ostrikov K (Kostya)  
Weinheim, : Wiley-VCH, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plasma-aided nanofabrication [[electronic resource] ] : from plasma sources to nanoassembly / / Kostya (Ken) Ostrikov and Shuyan Xu
Plasma-aided nanofabrication [[electronic resource] ] : from plasma sources to nanoassembly / / Kostya (Ken) Ostrikov and Shuyan Xu
Autore Ostrikov K (Kostya)
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2007
Descrizione fisica 1 online resource (317 p.)
Disciplina 620.5
621.044
Altri autori (Persone) XuShuyan
Soggetto topico Low temperature plasmas
Manufacturing processes
Nanostructured materials
Plasma engineering
ISBN 1-281-08802-1
9786611088026
3-527-61155-X
3-527-61156-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Plasma-Aided Nanofabrication; Contents; Preface; 1 Introduction; 1.1 What is a Plasma?; 1.2 Relevant Issues of Nanoscience and Nanotechnology; 1.3 Plasma-Assisted Synthesis of Nanomaterials; 1.4 How to Choose the Right Plasma for Applications in Nanotechnology?; 1.5 Structure of the Monograph and Advice to the Reader; 2 Generation of Highly Uniform, High-Density Inductively Coupled Plasma; 2.1 Low-Frequency ICP with a Flat External Spiral Coil: Plasma Source and Diagnostic Equipment; 2.1.1 Plasma Source; 2.1.2 Diagnostics of Inductively Coupled Plasmas
3 Plasma Sources: Meeting the Demands of Nanotechnology3.1 Inductively Coupled Plasma Source with Internal Oscillating Currents: Concept and Experimental Verification; 3.1.1 Configuration of the IOCPS; 3.1.2 RF Power Deposition; 3.1.3 Plasma Parameters; 3.2 IOCPS: Stability and Mode Transitions; 3.2.1 Optical Emission; 3.2.2 Self-Transitions of the IOCPS Discharge Modes; 3.3 ICP-Assisted DC Magnetron Sputtering Device; 3.3.1 Enhancement of DC Magnetron Sputtering by an Inductively Coupled Plasma Source; 3.3.2 Mode Transitions in ICP-Assisted Magnetron Sputtering Device
3.4 Integrated Plasma-Aided Nanofabrication Facility3.5 Concluding Remarks; 4 Carbon-Based Nanostructures; 4.1 Growth of Carbon Nanostructures on Unheated Substrates; 4.1.1 Process Details; 4.1.2 Synthesis, Characterization, and Growth Kinetics; 4.2 Temperature-Controlled Regime; 4.3 Single-Crystalline Carbon Nanotips: Experiment; 4.4 Single-Crystalline Carbon Nanotips: ab initio Simulations; 4.4.1 Theoretical Background and Numerical Code; 4.4.2 Geometrical Stability of Carbon Nanotip Structures; 4.4.3 Electronic Properties of Carbon Nanotips
4.5 Plasma-Assisted Doping and Functionalization of Carbon Nanostructures4.5.1 Doping of Carbon-Based Nanostructures: Density Functional Theory Considerations; 4.5.2 Postprocessing of Carbon-Based Nanostructures: Experiments; 4.6 Synthesis of Carbon Nanowall-Like Structures; 5 Quantum Confinement Structures; 5.1 Plasma-Assisted Fabrication of AlN Quantum Dots; 5.2 Nanofabrication of Al(x)In(1-x)N Quantum Dots: Plasma-Aided Bandgap Control; 5.3 Plasma-Aided Nanofabrication of SiC Quantum Dot Arrays; 5.3.1 SiC Properties and Applications; 5.3.2 SiC Growth Modes: With and Without AlN Interlayer
5.3.3 Quest for Crystallinity and Nanopattern Uniformity
Record Nr. UNINA-9910830470903321
Ostrikov K (Kostya)  
Weinheim, : Wiley-VCH, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plasma-aided nanofabrication : from plasma sources to nanoassembly / / Kostya (Ken) Ostrikov and Shuyan Xu
Plasma-aided nanofabrication : from plasma sources to nanoassembly / / Kostya (Ken) Ostrikov and Shuyan Xu
Autore Ostrikov K (Kostya)
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2007
Descrizione fisica 1 online resource (317 p.)
Disciplina 620.5
621.044
Altri autori (Persone) XuShuyan
Soggetto topico Low temperature plasmas
Manufacturing processes
Nanostructured materials
Plasma engineering
ISBN 9786611088026
9781281088024
1281088021
9783527611553
352761155X
9783527611560
3527611568
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Plasma-Aided Nanofabrication; Contents; Preface; 1 Introduction; 1.1 What is a Plasma?; 1.2 Relevant Issues of Nanoscience and Nanotechnology; 1.3 Plasma-Assisted Synthesis of Nanomaterials; 1.4 How to Choose the Right Plasma for Applications in Nanotechnology?; 1.5 Structure of the Monograph and Advice to the Reader; 2 Generation of Highly Uniform, High-Density Inductively Coupled Plasma; 2.1 Low-Frequency ICP with a Flat External Spiral Coil: Plasma Source and Diagnostic Equipment; 2.1.1 Plasma Source; 2.1.2 Diagnostics of Inductively Coupled Plasmas
3 Plasma Sources: Meeting the Demands of Nanotechnology3.1 Inductively Coupled Plasma Source with Internal Oscillating Currents: Concept and Experimental Verification; 3.1.1 Configuration of the IOCPS; 3.1.2 RF Power Deposition; 3.1.3 Plasma Parameters; 3.2 IOCPS: Stability and Mode Transitions; 3.2.1 Optical Emission; 3.2.2 Self-Transitions of the IOCPS Discharge Modes; 3.3 ICP-Assisted DC Magnetron Sputtering Device; 3.3.1 Enhancement of DC Magnetron Sputtering by an Inductively Coupled Plasma Source; 3.3.2 Mode Transitions in ICP-Assisted Magnetron Sputtering Device
3.4 Integrated Plasma-Aided Nanofabrication Facility3.5 Concluding Remarks; 4 Carbon-Based Nanostructures; 4.1 Growth of Carbon Nanostructures on Unheated Substrates; 4.1.1 Process Details; 4.1.2 Synthesis, Characterization, and Growth Kinetics; 4.2 Temperature-Controlled Regime; 4.3 Single-Crystalline Carbon Nanotips: Experiment; 4.4 Single-Crystalline Carbon Nanotips: ab initio Simulations; 4.4.1 Theoretical Background and Numerical Code; 4.4.2 Geometrical Stability of Carbon Nanotip Structures; 4.4.3 Electronic Properties of Carbon Nanotips
4.5 Plasma-Assisted Doping and Functionalization of Carbon Nanostructures4.5.1 Doping of Carbon-Based Nanostructures: Density Functional Theory Considerations; 4.5.2 Postprocessing of Carbon-Based Nanostructures: Experiments; 4.6 Synthesis of Carbon Nanowall-Like Structures; 5 Quantum Confinement Structures; 5.1 Plasma-Assisted Fabrication of AlN Quantum Dots; 5.2 Nanofabrication of Al(x)In(1-x)N Quantum Dots: Plasma-Aided Bandgap Control; 5.3 Plasma-Aided Nanofabrication of SiC Quantum Dot Arrays; 5.3.1 SiC Properties and Applications; 5.3.2 SiC Growth Modes: With and Without AlN Interlayer
5.3.3 Quest for Crystallinity and Nanopattern Uniformity
Record Nr. UNINA-9911019616703321
Ostrikov K (Kostya)  
Weinheim, : Wiley-VCH, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui