Fundamental solutions of linear partial differential operators : theory and practice / Norbert Ortner, Peter Wagner
| Fundamental solutions of linear partial differential operators : theory and practice / Norbert Ortner, Peter Wagner |
| Autore | Ortner, Norbert |
| Pubbl/distr/stampa | [Cham], : Springer, 2015 |
| Descrizione fisica | XII, 398 p. : ill. ; 24 cm |
| Altri autori (Persone) | Wagner, Peter |
| Soggetto topico |
44A10 - Laplace transform [MSC 2020]
35L25 - Higher-order hyperbolic equations [MSC 2020] 46F12 - Integral transforms in distribution spaces [MSC 2020] 35E05 - Fundamental solutions to PDEs and systems of PDEs with constant coefficients [MSC 2020] 35J30 - Higher order elliptic equations [MSC 2020] 74B05 - Classical linear elasticity [MSC 2020] 78A25 - Electromagnetic theory, general [MSC 2020] 35K40 - Second-order parabolic systems [MSC 2020] 74H05 - Explicit solutions of dynamical problems in solid mechanics [MSC 2020] |
| Soggetto non controllato |
Fourier transform
Fundamental matrices Fundamental solutions Herglotz–Petrovsky–Leray formulas Laplace transform Partial differential equations Systems of linear differential operators |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0113651 |
Ortner, Norbert
|
||
| [Cham], : Springer, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Fundamental solutions of linear partial differential operators : theory and practice / Norbert Ortner, Peter Wagner
| Fundamental solutions of linear partial differential operators : theory and practice / Norbert Ortner, Peter Wagner |
| Autore | Ortner, Norbert |
| Pubbl/distr/stampa | [Cham], : Springer, 2015 |
| Descrizione fisica | XII, 398 p. : ill. ; 24 cm |
| Altri autori (Persone) | Wagner, Peter |
| Soggetto topico |
35E05 - Fundamental solutions to PDEs and systems of PDEs with constant coefficients [MSC 2020]
35J30 - Higher order elliptic equations [MSC 2020] 35K40 - Second-order parabolic systems [MSC 2020] 35L25 - Higher-order hyperbolic equations [MSC 2020] 44A10 - Laplace transform [MSC 2020] 46F12 - Integral transforms in distribution spaces [MSC 2020] 74B05 - Classical linear elasticity [MSC 2020] 74H05 - Explicit solutions of dynamical problems in solid mechanics [MSC 2020] 78A25 - Electromagnetic theory, general [MSC 2020] |
| Soggetto non controllato |
Fourier transform
Fundamental matrices Fundamental solutions Herglotz–Petrovsky–Leray formulas Laplace transform Partial Differential Equations Systems of linear differential operators |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00113651 |
Ortner, Norbert
|
||
| [Cham], : Springer, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Fundamental solutions of linear partial differential operators : theory and practice / Norbert Ortner, Peter Wagner
| Fundamental solutions of linear partial differential operators : theory and practice / Norbert Ortner, Peter Wagner |
| Autore | Ortner, Norbert |
| Edizione | [[Cham] : Springer, 2015] |
| Pubbl/distr/stampa | XII, 398 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Altri autori (Persone) | Wagner, Peter |
| Soggetto topico |
44A10 - Laplace transform [MSC 2020]
35L25 - Higher-order hyperbolic equations [MSC 2020] 46F12 - Integral transforms in distribution spaces [MSC 2020] 35E05 - Fundamental solutions to PDEs and systems of PDEs with constant coefficients [MSC 2020] 35J30 - Higher order elliptic equations [MSC 2020] 74B05 - Classical linear elasticity [MSC 2020] 78A25 - Electromagnetic theory, general [MSC 2020] 35K40 - Second-order parabolic systems [MSC 2020] 74H05 - Explicit solutions of dynamical problems in solid mechanics [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0113651 |
Ortner, Norbert
|
||
| XII, 398 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||