Vai al contenuto principale della pagina

Robust Subspace Estimation Using Low-Rank Optimization : Theory and Applications / / by Omar Oreifej, Mubarak Shah



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Oreifej Omar Visualizza persona
Titolo: Robust Subspace Estimation Using Low-Rank Optimization : Theory and Applications / / by Omar Oreifej, Mubarak Shah Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Edizione: 1st ed. 2014.
Descrizione fisica: 1 online resource (116 p.)
Disciplina: 006.37
Soggetto topico: Optical data processing
Computer Imaging, Vision, Pattern Recognition and Graphics
Persona (resp. second.): ShahMubarak
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Introduction -- Background and Literature Review -- Seeing Through Water: Underwater Scene Reconstruction -- Simultaneous Turbulence Mitigation and Moving Object Detection -- Action Recognition by Motion Trajectory Decomposition -- Complex Event Recognition Using Constrained Rank Optimization -- Concluding Remarks -- Extended Derivations for Chapter 4.
Sommario/riassunto: Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation. By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate  how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.
Titolo autorizzato: Robust Subspace Estimation Using Low-Rank Optimization  Visualizza cluster
ISBN: 3-319-04184-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910299054203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: The International Series in Video Computing, . 1571-5205 ; ; 12