Database Systems for Advanced Applications : 29th International Conference, DASFAA 2024, Gifu, Japan, July 2–5, 2024, Proceedings, Part III / / edited by Makoto Onizuka, Jae-Gil Lee, Yongxin Tong, Chuan Xiao, Yoshiharu Ishikawa, Sihem Amer-Yahia, H. V. Jagadish, Kejing Lu
| Database Systems for Advanced Applications : 29th International Conference, DASFAA 2024, Gifu, Japan, July 2–5, 2024, Proceedings, Part III / / edited by Makoto Onizuka, Jae-Gil Lee, Yongxin Tong, Chuan Xiao, Yoshiharu Ishikawa, Sihem Amer-Yahia, H. V. Jagadish, Kejing Lu |
| Autore | Onizuka Makoto |
| Edizione | [1st ed. 2025.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
| Descrizione fisica | 1 online resource (853 pages) |
| Disciplina | 005.74 |
| Altri autori (Persone) |
LeeJae-Gil
TongYongxin XiaoChuan IshikawaYoshiharu Amer-YahiaSihem JagadishH. V LuKejing |
| Collana | Lecture Notes in Computer Science |
| Soggetto topico |
Machine learning
Database management Computers Computer networks Computers, Special purpose Application software Machine Learning Database Management System Computing Milieux Computer Communication Networks Special Purpose and Application-Based Systems Computer and Information Systems Applications |
| ISBN |
9789819755554
9819755557 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910983487303321 |
Onizuka Makoto
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Database Systems for Advanced Applications : 29th International Conference, DASFAA 2024, Gifu, Japan, July 2–5, 2024, Proceedings, Part II / / edited by Makoto Onizuka, Jae-Gil Lee, Yongxin Tong, Chuan Xiao, Yoshiharu Ishikawa, Sihem Amer-Yahia, H. V. Jagadish, Kejing Lu
| Database Systems for Advanced Applications : 29th International Conference, DASFAA 2024, Gifu, Japan, July 2–5, 2024, Proceedings, Part II / / edited by Makoto Onizuka, Jae-Gil Lee, Yongxin Tong, Chuan Xiao, Yoshiharu Ishikawa, Sihem Amer-Yahia, H. V. Jagadish, Kejing Lu |
| Autore | Onizuka Makoto |
| Edizione | [1st ed. 2025.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
| Descrizione fisica | 1 online resource (873 pages) |
| Disciplina | 005.74 |
| Altri autori (Persone) |
LeeJae-Gil
TongYongxin XiaoChuan IshikawaYoshiharu Amer-YahiaSihem JagadishH. V LuKejing |
| Collana | Lecture Notes in Computer Science |
| Soggetto topico |
Machine learning
Database management Computers Computer networks Computers, Special purpose Application software Machine Learning Database Management System Computing Milieux Computer Communication Networks Special Purpose and Application-Based Systems Computer and Information Systems Applications |
| ISBN |
9789819757794
9819757797 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910983322903321 |
Onizuka Makoto
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Database Systems for Advanced Applications : 29th International Conference, DASFAA 2024, Gifu, Japan, July 2–5, 2024, Proceedings, Part III / / edited by Makoto Onizuka, Jae-Gil Lee, Yongxin Tong, Chuan Xiao, Yoshiharu Ishikawa, Sihem Amer-Yahia, H. V. Jagadish, Kejing Lu
| Database Systems for Advanced Applications : 29th International Conference, DASFAA 2024, Gifu, Japan, July 2–5, 2024, Proceedings, Part III / / edited by Makoto Onizuka, Jae-Gil Lee, Yongxin Tong, Chuan Xiao, Yoshiharu Ishikawa, Sihem Amer-Yahia, H. V. Jagadish, Kejing Lu |
| Autore | Onizuka Makoto |
| Edizione | [1st ed. 2025.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
| Descrizione fisica | 1 online resource (853 pages) |
| Disciplina | 005.74 |
| Altri autori (Persone) |
LeeJae-Gil
TongYongxin XiaoChuan IshikawaYoshiharu Amer-YahiaSihem JagadishH. V LuKejing |
| Collana | Lecture Notes in Computer Science |
| Soggetto topico |
Machine learning
Database management Computers Computer networks Computers, Special purpose Application software Machine Learning Database Management System Computing Milieux Computer Communication Networks Special Purpose and Application-Based Systems Computer and Information Systems Applications |
| ISBN |
9789819755554
9819755557 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996641270503316 |
Onizuka Makoto
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Database Systems for Advanced Applications : 29th International Conference, DASFAA 2024, Gifu, Japan, July 2–5, 2024, Proceedings, Part II / / edited by Makoto Onizuka, Jae-Gil Lee, Yongxin Tong, Chuan Xiao, Yoshiharu Ishikawa, Sihem Amer-Yahia, H. V. Jagadish, Kejing Lu
| Database Systems for Advanced Applications : 29th International Conference, DASFAA 2024, Gifu, Japan, July 2–5, 2024, Proceedings, Part II / / edited by Makoto Onizuka, Jae-Gil Lee, Yongxin Tong, Chuan Xiao, Yoshiharu Ishikawa, Sihem Amer-Yahia, H. V. Jagadish, Kejing Lu |
| Autore | Onizuka Makoto |
| Edizione | [1st ed. 2025.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
| Descrizione fisica | 1 online resource (873 pages) |
| Disciplina | 005.74 |
| Altri autori (Persone) |
LeeJae-Gil
TongYongxin XiaoChuan IshikawaYoshiharu Amer-YahiaSihem JagadishH. V LuKejing |
| Collana | Lecture Notes in Computer Science |
| Soggetto topico |
Machine learning
Database management Computers Computer networks Computers, Special purpose Application software Machine Learning Database Management System Computing Milieux Computer Communication Networks Special Purpose and Application-Based Systems Computer and Information Systems Applications |
| ISBN |
9789819757794
9819757797 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996641269003316 |
Onizuka Makoto
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Database Systems for Advanced Applications : 29th International Conference, DASFAA 2024, Gifu, Japan, July 2–5, 2024, Proceedings, Part V / / edited by Makoto Onizuka, Jae-Gil Lee, Yongxin Tong, Chuan Xiao, Yoshiharu Ishikawa, Sihem Amer-Yahia, H. V. Jagadish, Kejing Lu
| Database Systems for Advanced Applications : 29th International Conference, DASFAA 2024, Gifu, Japan, July 2–5, 2024, Proceedings, Part V / / edited by Makoto Onizuka, Jae-Gil Lee, Yongxin Tong, Chuan Xiao, Yoshiharu Ishikawa, Sihem Amer-Yahia, H. V. Jagadish, Kejing Lu |
| Autore | Onizuka Makoto |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (562 pages) |
| Disciplina | 005.74 |
| Altri autori (Persone) |
LeeJae-Gil
TongYongxin XiaoChuan IshikawaYoshiharu Amer-YahiaSihem JagadishH. V LuKejing |
| Collana | Lecture Notes in Computer Science |
| Soggetto topico |
Machine learning
Database management Computers Computer networks Computers, Special purpose Application software Machine Learning Database Management System Computing Milieux Computer Communication Networks Special Purpose and Application-Based Systems Computer and Information Systems Applications |
| ISBN |
9789819755691
9819755697 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Natural language processing -- Large language model -- Time series and stream data. |
| Record Nr. | UNINA-9910917786303321 |
Onizuka Makoto
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Database Systems for Advanced Applications : 29th International Conference, DASFAA 2024, Gifu, Japan, July 2–5, 2024, Proceedings, Part VI / / edited by Makoto Onizuka, Jae-Gil Lee, Yongxin Tong, Chuan Xiao, Yoshiharu Ishikawa, Sihem Amer-Yahia, H. V. Jagadish, Kejing Lu
| Database Systems for Advanced Applications : 29th International Conference, DASFAA 2024, Gifu, Japan, July 2–5, 2024, Proceedings, Part VI / / edited by Makoto Onizuka, Jae-Gil Lee, Yongxin Tong, Chuan Xiao, Yoshiharu Ishikawa, Sihem Amer-Yahia, H. V. Jagadish, Kejing Lu |
| Autore | Onizuka Makoto |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (510 pages) |
| Disciplina | 006.31 |
| Altri autori (Persone) |
LeeJae-Gil
TongYongxin XiaoChuan IshikawaYoshiharu Amer-YahiaSihem JagadishH. V LuKejing |
| Collana | Lecture Notes in Computer Science |
| Soggetto topico |
Machine learning
Application software Computers Computer networks Computers, Special purpose Machine Learning Computer and Information Systems Applications Computing Milieux Computer Communication Networks Special Purpose and Application-Based Systems |
| ISBN | 981-9755-72-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part VI -- Graph and Network -- Cascading Graph Convolution Contrastive Learning Networks for Multi-behavior Recommendation -- 1 Introduction -- 2 Related Work -- 3 Problem Definition -- 4 Proposed Model -- 4.1 Overall Framework -- 4.2 Node Representation Learning -- 4.3 Multi-task Learning -- 4.4 Contrastive Learning -- 4.5 Joint Optimization -- 5 Experiment -- 5.1 Experiment Settings -- 5.2 Overall Performance -- 5.3 Ablation Study -- 5.4 Hyper-parameter Study -- 6 Conclusion -- References -- Social Relation Enhanced Heterogeneous Graph Contrastive Learning for Recommendation -- 1 Introduction -- 2 Related Work -- 2.1 Social Recommendation -- 2.2 Heterogeneous Graph Learning -- 2.3 Contrastive Learning for Recommendation -- 3 Methodology -- 3.1 Definitions and Problem Formulation -- 3.2 Cross-View Heterogeneous Graph Construction -- 3.3 View-Based Graph Learning -- 3.4 View-Level Contrastive Learning -- 3.5 Multi-task Training -- 4 Experiment -- 4.1 Experimental Setting -- 4.2 Performance Comparision(RQ1) -- 4.3 Experiment with Effectiveness(RQ2) -- 4.4 Hyper-parameter Analysis(RQ3) -- 5 Conclusion -- References -- Higher-Order Graph Contrastive Learning for Recommendation -- 1 Introduction -- 2 Preliminaries -- 3 The Proposed Method -- 3.1 Construction of High-Order Graphs -- 3.2 Message Propagation and Knowledge Fusion -- 3.3 Contrastive Learning for High-Order View -- 3.4 Contrastive Learning for General View -- 3.5 Optimization -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Overall Performance Comparison -- 4.3 Further Analysis of HoGCL -- 5 Related Work -- 6 Conclusion -- References -- FNDPro: Evaluating the Importance of Propagations during Fake News Spread -- 1 Introduction -- 2 Related Work -- 2.1 Content-Based Models -- 2.2 Graph-Based Models -- 3 Methodology.
3.1 News Propagation Network -- 3.2 Propagation Encoder -- 3.3 Propagation Transformer Module -- 3.4 Learning and Optimization -- 4 Experiments -- 4.1 Main Results -- 4.2 Propagation Transformer Study -- 4.3 Discussion -- 4.4 Case Study -- 5 Conclusion -- References -- Leveraging Homophily-Augmented Energy Propagation for Bot Detection on Graphs -- 1 Introduction -- 2 Preliminaries and Problem Statement -- 3 Proposed Model -- 3.1 Impacts of Graph Structure on In-Distribution Learning -- 3.2 Heterophily-Wise Node Embedding Learning -- 3.3 Energy Calculation -- 3.4 Homophily-Augmented Energy Propagation -- 3.5 Loss Function -- 4 Experimental Results and Analysis -- 4.1 Experimental Setup -- 4.2 Effectiveness of Edge Prediction -- 4.3 Comparison with Baselines for Bot Detection -- 4.4 Case Study: ODD for Bot Detection -- 4.5 Ablation Study -- 5 Conclusion -- References -- Multi-level Contrastive Learning on Weak Social Networks for Information Diffusion Prediction -- 1 Introduction -- 2 Preliminaries -- 3 Methodology -- 3.1 Multiplex Heterogeneous Graph Learning -- 3.2 Self-supervised Graph Training -- 3.3 Information Diffusion Prediction -- 4 Performance Evaluation -- 4.1 Experimental Settings -- 4.2 Overall Performance (RQ1) -- 4.3 Ablation Study (RQ2) -- 4.4 Hyperparameter Analysis (RQ3) -- 4.5 Performance in Different Scenarios (RQ4) -- 5 Related Work -- 6 Conclusion -- References -- BiasRec: A General Bias-Aware Social Recommendation Model -- 1 Introduction -- 2 Related Work -- 2.1 Bias In Recommendation System -- 2.2 Social Recommendation -- 3 Proposed Method -- 3.1 Preliminaries and General Framework -- 3.2 Data Transformation -- 3.3 Representation Learning -- 3.4 Rating Prediction -- 3.5 Loss Function -- 4 Experiment -- 4.1 Experimental Settings -- 4.2 Experimental Results -- 4.3 Ablation Experiment -- 4.4 Bias vs. Preference -- 5 Conclusion. References -- Beyond the Known: Novel Class Discovery for Open-World Graph Learning -- 1 Introduction -- 2 Problem Formulation -- 3 Methodology -- 3.1 Prototypical Attention Network -- 3.2 Pseudo-Label Guided Open-World Learning -- 4 Experiments -- 4.1 Experiment Settings -- 4.2 Main Results -- 4.3 Abaltion Study -- 4.4 Impact of Hyper-Parameter Settings -- 5 Related Work -- 6 Conclusion -- References -- Robust Graph Recommendation via Noise-Aware Adversarial Perturbation -- 1 Introduction -- 2 Preliminary -- 3 Proposed Methods -- 3.1 Confidence-Score Weighted Interaction Graph -- 3.2 Noise-aware Adversarial Perturbation -- 3.3 Optimization -- 4 Experiments -- 4.1 Experiment Setup -- 4.2 Overall Performance (RQ1) -- 4.3 Robustness Evaluation (RQ2) -- 4.4 Ablation Study (RQ3) -- 4.5 Further Analysis (RQ4) -- 4.6 Parameter Sensitivity (RQ5) -- 5 Related Work -- 6 Conclusion -- References -- Learning Social Graph for Inactive User Recommendation -- 1 Introduction -- 2 Industrial Observations on Social Relation -- 3 Preliminary -- 4 The Proposed Model -- 4.1 Encoding User-Item Interactions -- 4.2 Graph Structure Learning on Social Graph -- 4.3 Mimic Learning -- 4.4 Complexity Analysis -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Overall Recommendation Performance(RQ1) -- 5.3 Effects of Graph Structure Learning(RQ2) -- 5.4 Effects of Hyper-Parameters(RQ3) -- 6 Related Work -- 7 Conclusion -- References -- MANE: A Multi-cascade Adversarial Network Embedding Model for Anchor Link Prediction -- 1 Introduction -- 2 Related Work -- 3 The MANE Model -- 3.1 Model Overview -- 3.2 Problem Definition -- 3.3 Multi-cascade Network Embedding -- 3.4 Training with Adversarial Network -- 3.5 Anchor Link Prediction -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Results -- 5 Conclusion -- References. uTransfer: Unified Transferability Metric Incorporating Heterogeneous User Data in Social Network -- 1 Introduction -- 2 Related Work -- 2.1 Similarity Measurement -- 2.2 Transferability Measurement -- 3 Methodology -- 3.1 Problem Formulation -- 3.2 Our Method: uTransfer -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Performance Comparison -- 5 Conclusion -- References -- GPSR: Graph Prompt for Session-Based Recommendation -- 1 Introduction -- 2 Related Work -- 2.1 Session-Based Recommender Systems -- 2.2 Graph Pretraining -- 3 The Proposed GPSR Method -- 3.1 Session Graph Construction -- 3.2 Graph Model Pretraining -- 3.3 Prompt and Finetuning -- 3.4 Next-Item Prediction and Algorithm Summary -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Performance Improvement over Non-Pretraining Counterpart -- 4.3 Comparison with Baseline Methods -- 4.4 Analysis on the Basis Vector Number -- 5 Conclusion -- References -- Guiding Graph Learning with Denoised Modality for Multi-modal Recommendation -- 1 Introduction -- 2 Related Work -- 2.1 Multi-modal Recommendation -- 2.2 Graph Denoising Network -- 3 Preliminary -- 3.1 Modality-Aware User-Item Graph -- 3.2 Task Formulation -- 4 Methodology -- 4.1 Masked Modality Feature AutoEncoder -- 4.2 Modality-Guided Structure Denoising Learning -- 4.3 Cross-Modal Contrastive Aggregation -- 4.4 Prediction and Optimization -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Overall Performance -- 5.3 Ablation Study -- 5.4 Hyper-parameter Analysis -- 6 Conclusion -- References -- Enhancing Multi-view Contrastive Learning for Graph Anomaly Detection -- 1 Introduction -- 2 Related Work -- 2.1 Graph Anomaly Detection -- 2.2 Graph Contrastive Learning -- 3 Problem Formulation -- 4 Method -- 4.1 Global View Generation and Contrast Element Sample -- 4.2 Contrastive Learning Module -- 4.3 Reconstruction Module. 4.4 Anomaly Detection Calculation -- 5 Experiments -- 5.1 Datasets -- 5.2 Experimental Settings -- 5.3 Result and Analysis -- 5.4 Ablation Study -- 5.5 Parameter Study -- 6 Conclusion -- References -- Global Route Planning for Large-Scale Requests on Traffic-Aware Road Network -- 1 Introduction -- 2 Related Work -- 2.1 Shortest Path Planning Algorithm -- 2.2 Global Route Planning Algorithm -- 3 Preliminaries -- 4 Global Path Optimization -- 4.1 Traffic Evaluation and Weight Update -- 4.2 Query Grouping -- 4.3 Initial Path Planning -- 4.4 Local Path Optimization -- 4.5 Iterative Optimization -- 5 Experimental Study -- 5.1 Experiment Settings -- 6 Conclusion -- References -- TransGAD: A Transformer-Based Autoencoder for Graph Anomaly Detection -- 1 Introduction -- 2 Related Work -- 2.1 Graph Neural Networks -- 2.2 Graph Anomaly Detection -- 2.3 Graph Transformer -- 3 Problem Formulation -- 4 Methodology -- 4.1 Neighborhood Representation Sequence -- 4.2 Transformer-Based Encoder -- 4.3 Attribute Decoder and Structure Decoder -- 4.4 Graph Anomaly Detection -- 5 Experiments -- 5.1 Dataset Description -- 5.2 Experimental Setup -- 5.3 Experimental Result -- 6 Conclusion -- References -- Unsupervised Node Clustering via Contrastive Hard Sampling -- 1 Introduction -- 2 Related Work -- 2.1 Node Clustering -- 2.2 Contrastive Learning -- 3 Problem Formulation and Preliminary -- 3.1 Graph Contrastive Learning -- 4 MeCole -- 4.1 Node-Level Fine-Grained Contrastive Learning -- 4.2 Augmentation Scheme -- 4.3 Model Overview -- 4.4 Feature Decoupling -- 4.5 Joint Learning Framework -- 4.6 Integrate Content Representations -- 4.7 Synthesizing Nodes and Contrastive Learning -- 4.8 Decoupled Cluster Module -- 4.9 Put Everything Together -- 5 Experiments -- 5.1 Experiment Results -- 5.2 Ablation Study -- 5.3 Discrepancy Functions -- 5.4 Integrate Contrastive Learning. 5.5 Sparse Graph. |
| Record Nr. | UNINA-9910886078403321 |
Onizuka Makoto
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Database Systems for Advanced Applications : 29th International Conference, DASFAA 2024, Gifu, Japan, July 2–5, 2024, Proceedings, Part V / / edited by Makoto Onizuka, Jae-Gil Lee, Yongxin Tong, Chuan Xiao, Yoshiharu Ishikawa, Sihem Amer-Yahia, H. V. Jagadish, Kejing Lu
| Database Systems for Advanced Applications : 29th International Conference, DASFAA 2024, Gifu, Japan, July 2–5, 2024, Proceedings, Part V / / edited by Makoto Onizuka, Jae-Gil Lee, Yongxin Tong, Chuan Xiao, Yoshiharu Ishikawa, Sihem Amer-Yahia, H. V. Jagadish, Kejing Lu |
| Autore | Onizuka Makoto |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (562 pages) |
| Disciplina | 005.74 |
| Altri autori (Persone) |
LeeJae-Gil
TongYongxin XiaoChuan IshikawaYoshiharu Amer-YahiaSihem JagadishH. V LuKejing |
| Collana | Lecture Notes in Computer Science |
| Soggetto topico |
Machine learning
Database management Computers Computer networks Computers, Special purpose Application software Machine Learning Database Management System Computing Milieux Computer Communication Networks Special Purpose and Application-Based Systems Computer and Information Systems Applications |
| ISBN |
9789819755691
9819755697 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Natural language processing -- Large language model -- Time series and stream data. |
| Record Nr. | UNISA-996635671503316 |
Onizuka Makoto
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||