Nonlinear Dynamics of Structures / / by Sergio Oller |
Autore | Oller Sergio |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
Descrizione fisica | 1 online resource (XIII, 192 p.) |
Disciplina | 620 |
Collana | Lecture Notes on Numerical Methods in Engineering and Sciences |
Soggetto topico |
Vibration
Dynamical systems Dynamics Mechanics Mechanical engineering Vibration, Dynamical Systems, Control Classical Mechanics Mechanical Engineering |
ISBN | 3-319-05194-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Thermodynamic Basis of the Motion Equation -- Introduction -- Kinematics of the Deformable Bodies -- Basic definitions of tensors describing the kinematics of a point in the space -- Strain Measurements -- Mechanical variables relations -- The Objective Derivative -- Velocity -- Stress Measurements -- Thermodynamics Basis -- First Law of Thermodynamics -- Second Law of Thermodynamics -- Lagrangian local form of Mechanical Dissipation -- Internal Variables -- Dynamic Equilibrium Equation for a Discrete Solid -- Different types of Nonlinear Dynamic Problems -- Materials.Nonlinearity -- Solution of the Motion Equation -- Introduction -- Explicit-implicit solution -- Implicit solution -- Equilibrium at time (t + Δt) -- Equilibrium solution in time –implicit methods -- Newmark´s procedure -- Houbolt´s procedure -- Solution of the nonlinear-equilibrium equations system -- Newton-Raphson Method -- Modified Newton-Raphson Method -- Convergence accelerators -- Aitken accelerator or extrapolation algorithm -- B.F.G.S Algorithms -- Secant-Newton algorithms -- “Line-Search”algorithms -- Solution control algorithms – “Arc-Length” -- Ecuación de control de desplazamiento – Superficie esférica -- Convergence Analysis of the dynamic solution -- Introduction -- Reduction to the linear elastic problem -- Solution of second-order linear symmetric systems -- The dynamic equilibrium equation and its convergence-consistency and stability -- Solution stability of second –order linear symmetric systems -- Stability analysis procedure -- Determination of A and L for “Newmark” -- Determination of A and L for central differences- Newmark´s explicit form -- Solution stability of second-order non-linear symmetric systems -- Stability of the linearized equation -- Energy conservation algorithms -- APPENDIX - 1 -- APPENDIX - 2 -- Time-independent models -- Introduction -- Elastic behavior -- Invariant of the tensors -- Non-linear Elasticity -- Introduction -- Non-linear hyper-elastic model -- Stress based hyper-elastic model -- Stability Postulates -- Plasticity in small deformations -- Introduction -- Discontinuity behavior or plastic yield criterion -- Elasto-Plastic behavior -- Levy-Mises theory -- Prandtl-Reus theory -- The classic plasticity theory -- Plastic unit or Specific work -- Plastic loading surface. Plastic hardening variable -- Isotropic hardening -- Kinematic hardening -- Stress-Strain relation. Plastic consistency and Tangent rigidity -- Drucker´s stability postulate and maximum plastic dissipation -- Stability condition -- Local stability -- Global stability -- Condition of Unicity of Solution -- Kuhn-Tucker. Loading-unloading condition -- Yield or plastic discontinuity classic criteria -- Rankine criterion of maximum tension stress -- Tresca criterion of maximum shear stress -- Von Mises criterion of octahedral shear stress -- Mohr-Coulomb criterion of octahedral shear stress -- Drucker-Prager criterion -- Geomaterials plasticity -- Basis of the plastic-damage model -- Mechanical behavior required for the constitutive model formulation -- Some characteristics of the plastic damage model -- Main variables of the plastic-damage model -- Definition of the plastic damage variable -- Definition of the law of evolution of cohesion c -κp -- Definition of the variable φ internal friction angle -- Variable definition ψ, dilatancy angle -- Generalization of the damage model with stiffness degradation -- Introduction -- Elasto-plastic constitutive equation with stiffness degradation -- Tangent constitutive equation for stiffness degradation processes -- Particular yield functions -- Mohr-Coulomb modified function -- Drucker-Prager Modified function -- Isotropic Continuous Damage – Introduction -- Isotropic damage model -- Helmholtz´s free energy and constitutive equation -- Damage threshold criterion -- Evolution law of the internal damage variable -- Constritutive tensor of tangent damage -- Particularization of the damage criterion -- General Softening -- Exponential softening -- Linear softening -- Particularization of the stress threshold function -- Simo -Ju. Model -- Setting of A parameter for Simo-Ju. Model -- Lemaitre and Mazars Model -- General model for different damage surfaces -- Setting of A parameter -- Time-dependent Models -- Introduction -- Constitutive equations based on spring-damping analogies -- Kelvin simplified model -- Maxwell simplified model -- Kelvin generalized model -- Kelvin multiple generalized model -- Maxwell generalized model -- Maxwell multiple generalized model -- Dissipation Evaluation -- Multiaxial generalization of the viscoelastic constitutive laws -- Multiaxial form of viscoelastic models -- Numerical solution of the integral and algorithms -- Kelvin model in dynamic problems -- Kelvin model dissipation -- Equation of the dynamic equilibrium for Kelvin model -- Stress considerations. Rayleigh vs. Kelvin model -- Dissipation considerations. Rayleigh vs. Kelvin model -- Cantilever beam -- Frame with rigid beam and lumped mass -- Viscoplasticity -- Limit states of viscoplasticity -- Over stress function -- Integration algorithm for the viscoplastic constitutive equation -- Particular case of the Duvaut-Lyon model a Von Mises viscoplastic material. |
Record Nr. | UNINA-9910299753003321 |
Oller Sergio | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Numerical Simulation of Mechanical Behavior of Composite Materials / / by Sergio Oller |
Autore | Oller Sergio |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
Descrizione fisica | 1 online resource (XII, 217 p.) |
Disciplina | 620.1183 |
Collana | Lecture Notes on Numerical Methods in Engineering and Sciences |
Soggetto topico |
Mechanics, Applied
Mathematics - Data processing Building materials Ceramic materials Engineering Mechanics Computational Science and Engineering Structural Materials Ceramics |
ISBN | 3-319-04933-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Composite materials uses -- The use of composite materials in the automobile industry -- The use of composite materials in the Aeronautic industry -- Composite materials in the naval industry -- The use of composite materials in Civil Engineering -- Composites properties -- Classification of composite materials -- Classification by the topology -- Classification by their components -- Structural Classification -- Mechanical Anisotropy -- Introduction -- Generalities on the anisotropic formulation -- Yield function and plastic potential for isotropic materials -- General explicit definition of the isotropic yield criterion in the referential configuration -- General explicit definition of the orthotropic yield criterion in the referential configuration -- General implicit definition of the orthotropic criterion in the referential configuration -- Stresses space transformation -- Strain space transformation -- General definition of the stress space transformation tensor -- Numerical calculation of the adjusting tensor matrix form -- Mises-Hill orthotropic criterion verification by the space mapping theory -- Anisotropy in the updated configuration -- Transformation of the stresses space -- Transformation of the strain space -- Plastic flow rule. Internal variables evolution law -- Referential Configuration -- Updated Configuration -- Definition of the dissipation in the isotropic fictitious space. Unicity of the dissipation -- Referential configuration -- Updated configuration -- Tangent constitutive equation -- Referential Configuration -- Spatial Configuration -- Mixing Theory -- Introduction -- Classic Mixing Theory -- Free energy expression -- Classical theory modification. Serial-Parallel Model -- The generalized mixing theory -- Large strains classic mixing theory -- Closure or compatibility equation -- Free energy function -- The constitutive equation -- Generalized mixing theory formulated in large strains -- Constitutive equation -- Mixing theory modification for short length reinforcement -- Fiber axial stress distribution -- Tangent stress distribution in the interface -- Short fibers constitutive model -- Composite constitutive equation -- Free energy for short reinforced composite materials -- Fiber mechanical properties in the Mixing Theory – Linear behavior in small strains -- Comparative example. “Micromodel” vs. “Mixing Theory” with anisotropy in large strains -- Behavior simulation of asphalt mixtures -- Introduction -- Problem motivation and description -- Materials parameterization. Simplified granulometry and properties correction by aspect relation -- Numerical Simulation -- Fiber-Matrix Displacement (FMD)-Debonding -- Introduction -- Stresses distribution along the reinforced fiber -- Cracks and fibers interaction -- Constitutive models for composite materials with "FMD" -- A procedure proposed for “FMD” -- The constitutive model modification. Procedure for the fiber–matrix displacement phenomenon (FMD) -- Expression of the elastoplastic constitutive model of the reinforcement -- Yield condition -- Plastic flow rule -- "Total" and "Updated" Lagrangian Formulation -- Implementation of the mixing and anisotropy theory in the FEM context -- "FMD" Phenomenon: Micro model and Mixing Theory with anisotropy -- Homogenization Theory -- Introduction and state of the art -- Average Methods -- The asymptotic expansion theory -- Extension of the “Average Method” and the “Asymptotic Expansion Method” to the nonlinear problem -- Other homogenization-related subjects -- Homogenization Theory based on “Local Periodicity” -- Introduction -- Periodic structure concepts -- Variables Local periodicity -- Strains tensor homogenization -- The homogenized stress and the equilibrium equation -- Elastic problem basis at micro-macro scales -- Basis of the inelastic problem at micro-macro scales -- The elastic constitutive tensor determination for composite materials -- Quasi-tangent inelastic constitutive tensor determination for the composite materials. Analytical determination -- Micro-Macro structural coupling -- Local effects influence -- Test examples of the “Homogenization Theory of Local Periodicity” -- Transversal behavior of a reinforced long fibers matrix –Simple tensile test -- Thick cylinder subjected to internal pressure -- Masonry homogenized, treated as a composite -- Masonry-Homogenized Composite -- Introduction and background -- Masonry properties -- Masonry behavior under uniaxial compression -- Masonry behavior under uniaxial tension -- Biaxial behavior -- Post-peak masonry behavior. Softening -- Different methods for masonry calculation -- Constitutive model based on a particular case of the homogenization concept -- Constitutive model -- Formulation checkout -- Non-Linear Buckling of Reinforced Composites -- Introduction -- Problem description and state-of-the-art -- Euler critical load -- Rosen model -- Micro-mechanical models -- Mechanical damage models -- Model of stiffness-loss due to buckling in long-fibers composites reinforced -- Introduction -- Fiber model general definition -- Definition of the stiffness-loss variable due to buckling -- Main characteristics of the model -- Energy dissipation -- Test example. |
Record Nr. | UNINA-9910299753103321 |
Oller Sergio | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|