top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Quantum theory for mathematicians / Brian C. Hall
Quantum theory for mathematicians / Brian C. Hall
Autore Hall, Brian C., author
Descrizione fisica xvi, 554 p. : ill. ; 24 cm
Disciplina 530.15
Collana Graduate texts in mathematics ; 267
Graduate texts in mathematics, 0072-5285 ; 267
Soggetto topico Quantum theory - Mathematics
ISBN 9781489993625
Classificazione AMS 81-02
AMS 46N50
LC QC174.12.H346
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The experimental origins of quantum mechanics: Is light a wave or a particle? ; Is an electron a wave or a particle? ; SchroÌ̂dinger and Heisenberg ; A matter of interpretation ; Exercises -- A first approach to classical mechanics: Motion in R¹ ; Motion in R[superscript n] ; Systems of particles ; Angular momentum ; Poisson brackets and Hamiltonian mechanics ; The Kepler problem and the Runge-Lenz vector ; Exercises -- First approach to quantum mechanics: Waves, particles, and probabilities ; A few words about operators and their adjoints ; Position and the position operator ; Momentum and the momentum operator ; The position and momentum operators ; Axioms of quantum mechanics : operators and measurements ; Time-evolution in quantum theory ; The Heisenberg picture ; Example : a particle in a box ; Quantum mechanics for a particle in R [superscript n] ; Systems of multiple particles ; Physics notation ; Exercises -- The free SchroÌ̂dinger equation: Solution by means of the Fourier transform ; Solution as a convolution ; Propagation of the wave packet : first approach ; Propagation of the wave packet : second approach ; Spread of the wave packet ; Exercises -- Particle in a square well: The time-independent SchroÌ̂dinger equation ; Domain questions and the matching conditions ; Finding square-integrable solutions ; Tunneling and the classically forbidden region ; Discrete and continuous spectrum ; Exercises -- Perspectives on the spectral theorem: The difficulties with the infinite-dimensional case ; The goals of spectral theory ; A guide to reading ; The position operator ; Multiplication operators ; The momentum operator -- The spectral theorem for bounded self-adjoint operators : statements: Elementary properties of bounded operators ; Spectral theorem for bounded self-adjoint operators, I ; Spectral theorem for bounded self-adjoint operators, II ; Exercises -- The spectral theorem for bounded self-adjoint operators : proofs: Proof of the spectral theorem, first version ; Proof of the spectral theorem, second version ; Exercises -- Unbounded self-adjoint operators: Introduction ; Adjoint and closure of an unbounded operator ; Elementary properties of adjoints and closed operators ; The spectrum of an unbounded operator ; Conditions for self-adjointness and essential self-adjointness ; A counterexample ; An example ; The basic operators of quantum mechanics ; Sums of self-adjoint operators ; Another counterexample ; Exercises -- The spectral theorem for unbounded self-adjoint operators: Statements of the spectral theorem ; Stone's theorem and one-parameter unitary groups ; The spectral theorem for bounded normal operators ; Proof of the spectral theorem for unbounded self-adjoint operators ; Exercises -- The harmonic oscillator: The role of the harmonic oscillator ; The algebraic approach ; The analytic approach ; Domain conditions and completeness ; Exercises -- The uncertainty principle: Uncertainty principle, first version ; A counterexample ; Uncertainty principle, second version ; Minimum uncertainty states ; Exercises -- Quantization schemes for Euclidean space: Ordering ambiguities ; Some common quantization schemes ; The Weyl quantization for R²[superscript n] ; The "No go" theorem of Groenewold ; Exercises -- The Stone-Von Neumann theorem: A heuristic argument ; The exponentiated commutation relations ; The theorem ; The Segal-Bargmann space ; Exercises -- The WKB approximation: Introduction ; The old quantum theory and the Bohr-Sommerfeld condition ; Classical and semiclassical approximations ; The WKB approximation away from the turning points ; The Airy function and the connection formulas ; A rigorous error estimate ; Other approaches ; Exercises -- Lie groups, Lie algebras, and representations: Summary ; Matrix Lie groups ; Lie algebras ; The matrix exponential ; The Lie algebra of a matrix Lie group ; Relationships between Lie groups and Lie algebras ; Finite-dimensional representations of Lie groups and Lie algebras ; New representations from old ; Infinite-dimensional unitary representations ; Exercises -- Angular momentum and spin: The role of angular momentum in quantum mechanics ; The angular momentum operators in R³ ; Angular momentum from the Lie algebra point of view ; The irreducible representations of so(3) ; The irreducible representations of SO(3) ; Realizing the representations inside L²(S²) -- Realizing the representations inside L²(M³) ; Spin ; Tensor products of representations : "addition of angular momentum" ; Vectors and vector operators ; Exercises -- Radial potentials and the hydrogen atom: Radial potentials ; The hydrogen atom : preliminaries ; The bound states of the hydrogen atom ; The Runge-Lenz vector in the quantum Kepler problem ; The role of spin ; Runge-Lenz calculations ; Exercises -- Systems and subsystems, multiple particles: Introduction ; Trace-class and Hilbert-Schmidt operators ; Density matrices : the general notion of the state of a quantum system ; Modified axioms for quantum mechanics ; Composite systems and the tensor product ; Multiple particles : bosons and fermions ; "Statistics" and the Pauli exclusion principle ; Exercises -- The path integral formulation of quantum mechanics: Trotter product formula ; Formal derivation of the Feynman path integral ; The imaginary-time calculation ; The Wiener measure ; The Feynman-Kac formula ; Path integrals in quantum field theory ; Exercises -- Hamiltonian mechanics on manifolds: Calculus on manifolds ; Mechanics on symplectic manifolds ; Exercises -- Geometric quantization on Euclidean space: Introduction ; Prequantization ; Problems with prequantization ; Quantization ; Quantization of observables ; Exercises -- Geometric quantization on manifolds: Introduction ; Line bundles and connections ; Prequantization ; Polarizations ; Quantization without half-forms ; Quantization with half-forms : the real case ; Quantization with half-forms : the complex case ; Pairing maps ; Exercises -- A review of basic material: Tensor products of vector spaces ; Measure theory ; Elementary functional analysis ; Hilbert spaces and operators on them
Record Nr. UNISALENTO-991003377429707536
Hall, Brian C., author  
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Tomita-Takesaki theory in algebras of unbounded operators [e-book] / by Atsushi Inoue
Tomita-Takesaki theory in algebras of unbounded operators [e-book] / by Atsushi Inoue
Autore Inoue, Atsushi
Pubbl/distr/stampa Berlin : Springer, 1998
Descrizione fisica 1 online resource (viii, 244 p.)
Disciplina 515.724
Collana Lecture Notes in Mathematics, 0075-8434 ; 1699
Soggetto topico Mathematics
Operator theory
Quantum theory
Quantum computing
ISBN 9783540494959
Classificazione AMS 47D40
AMS 47D25
AMS 46L60
AMS 46N50
Formato Risorse elettroniche
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991002251319707536
Inoue, Atsushi  
Berlin : Springer, 1998
Risorse elettroniche
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui