top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Les avant-gardes en Catalogne (1916-1930) / / Serge Salaün, Elisée Trenc
Les avant-gardes en Catalogne (1916-1930) / / Serge Salaün, Elisée Trenc
Autore Ballester Elisée Trenc
Pubbl/distr/stampa Paris, : Presses Sorbonne Nouvelle, 2017
Descrizione fisica 1 online resource (134 p.)
Altri autori (Persone) OliverNuria
PrudonMontserrat
XerriCatherine
SalaünSerge
TrencElisée
Soggetto topico Catalan poetry - 20th century - History and criticism
Avant-garde (Aesthetics) - Spain - Catalonia
Arts, Catalan - 20th century
Soggetto non controllato art
XXème siècle
modernisme
littérature
avant-garde
Catalogne
Espagne
ISBN 2-87854-730-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione fre
Altri titoli varianti avant-gardes en Catalogne
Record Nr. UNINA-9910169187803321
Ballester Elisée Trenc  
Paris, : Presses Sorbonne Nouvelle, 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine learning and knowledge discovery in databases : research track : European conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, proceedings, part III / / Nuria Oliver [and four others], editors
Machine learning and knowledge discovery in databases : research track : European conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, proceedings, part III / / Nuria Oliver [and four others], editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (857 pages)
Disciplina 006.31
Collana Lecture Notes in Computer Science
Soggetto topico Machine learning
Data mining
ISBN 3-030-86523-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910503007103321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine learning and knowledge discovery in databases : research track : European conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, proceedings, part III / / Nuria Oliver [and four others], editors
Machine learning and knowledge discovery in databases : research track : European conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, proceedings, part III / / Nuria Oliver [and four others], editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (857 pages)
Disciplina 006.31
Collana Lecture Notes in Computer Science
Soggetto topico Machine learning
Data mining
ISBN 3-030-86523-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996464501603316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Machine learning and knowledge discovery in databases . Part II : Research Track : European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, proceedings / / Nuria Oliver [and four others]
Machine learning and knowledge discovery in databases . Part II : Research Track : European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, proceedings / / Nuria Oliver [and four others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer International Publishing, , [2021]
Descrizione fisica 1 online resource (845 pages)
Disciplina 006.3
Collana Lecture Notes in Computer Science
Soggetto topico Artificial intelligence - Research
Artificial intelligence - Data processing
ISBN 3-030-86520-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents - Part II -- Generative Models -- Non-exhaustive Learning Using Gaussian Mixture Generative Adversarial Networks -- 1 Introduction -- 2 Related Work -- 3 Background -- 4 Methodology -- 5 Experiments -- 6 Conclusion -- References -- Unsupervised Learning of Joint Embeddings for Node Representation and Community Detection -- 1 Introduction -- 2 Related Work -- 2.1 Community Detection -- 2.2 Node Representation Learning -- 2.3 Joint Community Detection and Node Representation Learning -- 3 Methodology -- 3.1 Problem Formulation -- 3.2 Variational Model -- 3.3 Design Choices -- 3.4 Practical Aspects -- 3.5 Complexity -- 4 Experiments -- 4.1 Synthetic Example -- 4.2 Datasets -- 4.3 Baselines -- 4.4 Settings -- 4.5 Discussion of Results -- 4.6 Hyperparameter Sensitivity -- 4.7 Training Time -- 4.8 Visualization -- 5 Conclusion -- References -- GraphAnoGAN: Detecting Anomalous Snapshots from Attributed Graphs -- 1 Introduction -- 2 Related Work -- 3 Problem Definition -- 4 Proposed Algorithm -- 4.1 GAN Modeling -- 4.2 Architecture -- 4.3 Training Procedure -- 5 Datasets -- 6 Experiments -- 6.1 Baselines -- 6.2 Comparative Evaluation -- 6.3 Side-by-Side Diagnostics -- 7 Conclusion -- References -- The Bures Metric for Generative Adversarial Networks -- 1 Introduction -- 2 Method -- 3 Empirical Evaluation of Mode Collapse -- 3.1 Artificial Data -- 3.2 Real Images -- 4 High Quality Generation Using a ResNet Architecture -- 5 Conclusion -- References -- Generative Max-Mahalanobis Classifiers for Image Classification, Generation and More -- 1 Introduction -- 2 Background and Related Work -- 2.1 Energy-Based Models -- 2.2 Alternatives to the Softmax Classifier -- 3 Methodology -- 3.1 Approach 1: Discriminative Training -- 3.2 Approach 2: Generative Training -- 3.3 Approach 3: Joint Training.
3.4 GMMC for Inference -- 4 Experiments -- 4.1 Hybrid Modeling -- 4.2 Calibration -- 4.3 Out-Of-Distribution Detection -- 4.4 Robustness -- 4.5 Training Stability -- 4.6 Joint Training -- 5 Conclusion and Future Work -- References -- Gaussian Process Encoders: VAEs with Reliable Latent-Space Uncertainty -- 1 Introduction -- 1.1 Contributions -- 2 Background -- 2.1 Variational Autoencoder -- 2.2 Latent Variance Estimates of NN -- 2.3 Mismatch Between the Prior and Approximate Posterior -- 3 Methodology -- 3.1 Gaussian Process Encoder -- 3.2 The Implications of a Gaussian Process Encoder -- 3.3 Out-of-Distribution Detection -- 4 Experiments -- 4.1 Log Likelihood -- 4.2 Uncertainty in the Latent Space -- 4.3 Benchmarking OOD Detection -- 4.4 OOD Polution of the Training Data -- 4.5 Synthesizing Variants of Input Data -- 4.6 Interpretable Kernels -- 5 Related Work -- 6 Conclusion -- References -- Variational Hyper-encoding Networks -- 1 Introduction -- 2 Variational Autoencoder (VAE) -- 3 Variational Hyper-encoding Networks -- 3.1 Hyper-auto-encoding Problem -- 3.2 Hyper-encoding Problem -- 3.3 Minimum Description Length -- 3.4 Compact Hyper-decoder Architecture -- 3.5 Applications -- 4 Experiments -- 4.1 Data Sets -- 4.2 Model Settings -- 4.3 Model Behavior -- 4.4 Robust Outlier Detection -- 4.5 Novelty Discovery -- 5 Related Work -- 6 Conclusion -- References -- Principled Interpolation in Normalizing Flows -- 1 Introduction -- 2 An Intuitive Solution -- 3 Normalizing Flows -- 4 Base Distributions on p-Norm Spheres -- 4.1 The Case p = 1 -- 4.2 The Case p = 2 -- 5 Experiments -- 5.1 Performance Metrics and Setup -- 5.2 Data -- 5.3 Architecture -- 5.4 Quantitative Results -- 5.5 Qualitative Results -- 6 Related Work -- 7 Conclusion -- References -- CycleGAN Through the Lens of (Dynamical) Optimal Transport -- 1 Introduction.
2 Desiderata for UDT and Analysis of CycleGAN -- 2.1 What Should Be the Properties of a UDT Solution? -- 2.2 CycleGAN Is Biased Towards Low Energy Transformations -- 3 UDT as Optimal Transport -- 3.1 A (Dynamical) OT Model for UDT -- 3.2 Regularity of OT Maps -- 3.3 Computing the Inverse -- 4 A Residual Instantiation from Dynamical OT -- 4.1 Linking the Dynamical Formulation with CycleGAN -- 4.2 A Typical UDT Task -- 4.3 Imbalanced CelebA task -- 5 Related Work -- 6 Discussion and Conclusion -- References -- Decoupling Sparsity and Smoothness in Dirichlet Belief Networks -- 1 Introduction -- 2 Preliminary Knowledge -- 3 Sparse and Smooth Dirichlet Belief Networks -- 3.1 Generative Process -- 3.2 Necessity of Fixing biK(l)=1 -- 4 Related Work -- 5 ssDirBN for Relational Modelling -- 5.1 Inference -- 5.2 Experimental Results -- 6 Conclusion -- References -- Algorithms and Learning Theory -- Self-bounding Majority Vote Learning Algorithms by the Direct Minimization of a Tight PAC-Bayesian C-Bound -- 1 Introduction -- 2 Majority Vote Learning -- 2.1 Notations and Setting -- 2.2 Gibbs Risk, Joint Error and C-Bound -- 2.3 Related Works -- 3 PAC-Bayesian C-Bounds -- 3.1 An Intuitive Bound-McAllester's View -- 3.2 A Tighter Bound-Seeger's View -- 3.3 Another Tighter Bound-Lacasse's View -- 4 Self-bounding Algorithms for PAC-Bayesian C-Bounds -- 4.1 Algorithm Based on McAllester's View -- 4.2 Algorithm Based on Seeger's View -- 4.3 Algorithm Based on Lacasse's View -- 5 Experimental Evaluation -- 5.1 Empirical Setting -- 5.2 Analysis of the Results -- 6 Conclusion and Future Work -- References -- Midpoint Regularization: From High Uncertainty Training Labels to Conservative Classification Decisions -- 1 Introduction -- 2 Related Work -- 3 Label Smoothing over Midpoint Samples -- 3.1 Preliminaries -- 3.2 Midpoint Generation.
3.3 Learning Smoothing Distribution for Midpoints -- 3.4 Optimization -- 4 Experiments -- 4.1 Datasets, Baselines, and Settings -- 4.2 Predictive Accuracy -- 4.3 Ablation Studies -- 4.4 Uncertainty Label and Conservative Classification -- 4.5 Testing on Out-of-Distribution Data -- 5 Conclusion and Future Work -- References -- Learning Weakly Convex Sets in Metric Spaces -- 1 Introduction -- 2 Preliminaries -- 3 Weak Convexity in Metric Spaces -- 3.1 Some Basic Properties of Weakly Convex Sets -- 4 Learning in the Extensional Problem Setting -- 4.1 Application Scenario: Vertex Classification -- 5 The Intensional Problem Setting -- 5.1 Learning Weakly Convex Boolean Functions -- 5.2 Learning Weakly Convex Axis-Aligned Hyperrectangles -- 6 Concluding Remarks -- References -- Disparity Between Batches as a Signal for Early Stopping -- 1 Introduction -- 2 Related Work -- 3 Generalization Penalty -- 4 Gradient Disparity -- 5 Early Stopping Criterion -- 6 Discussion and Final Remarks -- References -- Learning from Noisy Similar and Dissimilar Data -- 1 Introduction -- 2 Problem Setup -- 3 Loss Correction Approach -- 4 Weighted Classification Approach -- 5 Experiments -- 6 Conclusion and Future Work -- References -- Knowledge Distillation with Distribution Mismatch -- 1 Introduction -- 2 Related Works -- 3 Framework -- 3.1 Problem Definition -- 3.2 Proposed Method KDDM -- 4 Experiments and Discussions -- 4.1 Datasets -- 4.2 Baselines -- 4.3 Results on MNIST -- 4.4 Results on CIFAR-10 -- 4.5 Results on CIFAR-100 -- 4.6 Distillation When Teacher-Data and Student-Data Are Identical -- 5 Conclusion -- References -- Certification of Model Robustness in Active Class Selection -- 1 Introduction -- 1.1 Active Class Selection Constitutes a Domain Gap -- 1.2 A Qualitative Intuition from Information Theory -- 2 A Quantitative Perspective from Learning Theory.
2.1 Quantification of the Domain Gap -- 2.2 Certification of Domain Robustness for Binary Predictors -- 3 Experiments -- 3.1 Binary (, ) Certificates Are Tight -- 3.2 Binary (, ) Certificates in Astro-Particle Physics -- 4 Related Work -- 5 Conclusion -- References -- Graphs and Networks -- Inter-domain Multi-relational Link Prediction -- 1 Introduction -- 2 Preliminary -- 2.1 RESCAL -- 2.2 Optimal Transport -- 2.3 Maximum Mean Discrepancy -- 3 Problem Setting and Proposed Method -- 3.1 Problem Setting -- 3.2 Proposed Objective Function -- 4 Experiments -- 4.1 Datasets -- 4.2 Evaluation Methods and Baselines -- 4.3 Implementation Details -- 4.4 Experimental Results -- 5 Related Work -- 6 Conclusion and Future Work -- References -- GraphSVX: Shapley Value Explanations for Graph Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Preliminary Concepts and Background -- 3.1 Graph Neural Networks -- 3.2 The Shapley Value -- 4 A Unified Framework for GNN Explainers -- 5 Proposed Method -- 5.1 Mask and Graph Generators -- 5.2 Explanation Generator -- 5.3 Decomposition Model -- 5.4 Efficient Approximation Specific to GNNs -- 5.5 Desirable Properties of Explanations -- 6 Experimental Evaluation -- 6.1 Synthetic and Real Datasets with Ground Truth -- 6.2 Real-World Datasets Without Ground Truth -- 7 Conclusion -- References -- Multi-view Self-supervised Heterogeneous Graph Embedding -- 1 Introduction -- 2 Related Work -- 2.1 Self-supervised Learning on Graphs -- 2.2 Heterogeneous Graph Embedding -- 3 The Proposed Model -- 3.1 Model Framework -- 3.2 Heterogeneous Context Encoding -- 3.3 Multi-view Contrastive Learning -- 4 Experiment -- 4.1 Experimental Setup -- 4.2 Node Classification -- 4.3 Link Prediction -- 4.4 Ablation Study -- 4.5 Visualization -- 5 Conclusion -- References.
Semantic-Specific Hierarchical Alignment Network for Heterogeneous Graph Adaptation.
Record Nr. UNINA-9910502985903321
Cham, Switzerland : , : Springer International Publishing, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine learning and knowledge discovery in databases . Part II : Research Track : European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, proceedings / / Nuria Oliver [and four others]
Machine learning and knowledge discovery in databases . Part II : Research Track : European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, proceedings / / Nuria Oliver [and four others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer International Publishing, , [2021]
Descrizione fisica 1 online resource (845 pages)
Disciplina 006.3
Collana Lecture Notes in Computer Science
Soggetto topico Artificial intelligence - Research
Artificial intelligence - Data processing
ISBN 3-030-86520-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents - Part II -- Generative Models -- Non-exhaustive Learning Using Gaussian Mixture Generative Adversarial Networks -- 1 Introduction -- 2 Related Work -- 3 Background -- 4 Methodology -- 5 Experiments -- 6 Conclusion -- References -- Unsupervised Learning of Joint Embeddings for Node Representation and Community Detection -- 1 Introduction -- 2 Related Work -- 2.1 Community Detection -- 2.2 Node Representation Learning -- 2.3 Joint Community Detection and Node Representation Learning -- 3 Methodology -- 3.1 Problem Formulation -- 3.2 Variational Model -- 3.3 Design Choices -- 3.4 Practical Aspects -- 3.5 Complexity -- 4 Experiments -- 4.1 Synthetic Example -- 4.2 Datasets -- 4.3 Baselines -- 4.4 Settings -- 4.5 Discussion of Results -- 4.6 Hyperparameter Sensitivity -- 4.7 Training Time -- 4.8 Visualization -- 5 Conclusion -- References -- GraphAnoGAN: Detecting Anomalous Snapshots from Attributed Graphs -- 1 Introduction -- 2 Related Work -- 3 Problem Definition -- 4 Proposed Algorithm -- 4.1 GAN Modeling -- 4.2 Architecture -- 4.3 Training Procedure -- 5 Datasets -- 6 Experiments -- 6.1 Baselines -- 6.2 Comparative Evaluation -- 6.3 Side-by-Side Diagnostics -- 7 Conclusion -- References -- The Bures Metric for Generative Adversarial Networks -- 1 Introduction -- 2 Method -- 3 Empirical Evaluation of Mode Collapse -- 3.1 Artificial Data -- 3.2 Real Images -- 4 High Quality Generation Using a ResNet Architecture -- 5 Conclusion -- References -- Generative Max-Mahalanobis Classifiers for Image Classification, Generation and More -- 1 Introduction -- 2 Background and Related Work -- 2.1 Energy-Based Models -- 2.2 Alternatives to the Softmax Classifier -- 3 Methodology -- 3.1 Approach 1: Discriminative Training -- 3.2 Approach 2: Generative Training -- 3.3 Approach 3: Joint Training.
3.4 GMMC for Inference -- 4 Experiments -- 4.1 Hybrid Modeling -- 4.2 Calibration -- 4.3 Out-Of-Distribution Detection -- 4.4 Robustness -- 4.5 Training Stability -- 4.6 Joint Training -- 5 Conclusion and Future Work -- References -- Gaussian Process Encoders: VAEs with Reliable Latent-Space Uncertainty -- 1 Introduction -- 1.1 Contributions -- 2 Background -- 2.1 Variational Autoencoder -- 2.2 Latent Variance Estimates of NN -- 2.3 Mismatch Between the Prior and Approximate Posterior -- 3 Methodology -- 3.1 Gaussian Process Encoder -- 3.2 The Implications of a Gaussian Process Encoder -- 3.3 Out-of-Distribution Detection -- 4 Experiments -- 4.1 Log Likelihood -- 4.2 Uncertainty in the Latent Space -- 4.3 Benchmarking OOD Detection -- 4.4 OOD Polution of the Training Data -- 4.5 Synthesizing Variants of Input Data -- 4.6 Interpretable Kernels -- 5 Related Work -- 6 Conclusion -- References -- Variational Hyper-encoding Networks -- 1 Introduction -- 2 Variational Autoencoder (VAE) -- 3 Variational Hyper-encoding Networks -- 3.1 Hyper-auto-encoding Problem -- 3.2 Hyper-encoding Problem -- 3.3 Minimum Description Length -- 3.4 Compact Hyper-decoder Architecture -- 3.5 Applications -- 4 Experiments -- 4.1 Data Sets -- 4.2 Model Settings -- 4.3 Model Behavior -- 4.4 Robust Outlier Detection -- 4.5 Novelty Discovery -- 5 Related Work -- 6 Conclusion -- References -- Principled Interpolation in Normalizing Flows -- 1 Introduction -- 2 An Intuitive Solution -- 3 Normalizing Flows -- 4 Base Distributions on p-Norm Spheres -- 4.1 The Case p = 1 -- 4.2 The Case p = 2 -- 5 Experiments -- 5.1 Performance Metrics and Setup -- 5.2 Data -- 5.3 Architecture -- 5.4 Quantitative Results -- 5.5 Qualitative Results -- 6 Related Work -- 7 Conclusion -- References -- CycleGAN Through the Lens of (Dynamical) Optimal Transport -- 1 Introduction.
2 Desiderata for UDT and Analysis of CycleGAN -- 2.1 What Should Be the Properties of a UDT Solution? -- 2.2 CycleGAN Is Biased Towards Low Energy Transformations -- 3 UDT as Optimal Transport -- 3.1 A (Dynamical) OT Model for UDT -- 3.2 Regularity of OT Maps -- 3.3 Computing the Inverse -- 4 A Residual Instantiation from Dynamical OT -- 4.1 Linking the Dynamical Formulation with CycleGAN -- 4.2 A Typical UDT Task -- 4.3 Imbalanced CelebA task -- 5 Related Work -- 6 Discussion and Conclusion -- References -- Decoupling Sparsity and Smoothness in Dirichlet Belief Networks -- 1 Introduction -- 2 Preliminary Knowledge -- 3 Sparse and Smooth Dirichlet Belief Networks -- 3.1 Generative Process -- 3.2 Necessity of Fixing biK(l)=1 -- 4 Related Work -- 5 ssDirBN for Relational Modelling -- 5.1 Inference -- 5.2 Experimental Results -- 6 Conclusion -- References -- Algorithms and Learning Theory -- Self-bounding Majority Vote Learning Algorithms by the Direct Minimization of a Tight PAC-Bayesian C-Bound -- 1 Introduction -- 2 Majority Vote Learning -- 2.1 Notations and Setting -- 2.2 Gibbs Risk, Joint Error and C-Bound -- 2.3 Related Works -- 3 PAC-Bayesian C-Bounds -- 3.1 An Intuitive Bound-McAllester's View -- 3.2 A Tighter Bound-Seeger's View -- 3.3 Another Tighter Bound-Lacasse's View -- 4 Self-bounding Algorithms for PAC-Bayesian C-Bounds -- 4.1 Algorithm Based on McAllester's View -- 4.2 Algorithm Based on Seeger's View -- 4.3 Algorithm Based on Lacasse's View -- 5 Experimental Evaluation -- 5.1 Empirical Setting -- 5.2 Analysis of the Results -- 6 Conclusion and Future Work -- References -- Midpoint Regularization: From High Uncertainty Training Labels to Conservative Classification Decisions -- 1 Introduction -- 2 Related Work -- 3 Label Smoothing over Midpoint Samples -- 3.1 Preliminaries -- 3.2 Midpoint Generation.
3.3 Learning Smoothing Distribution for Midpoints -- 3.4 Optimization -- 4 Experiments -- 4.1 Datasets, Baselines, and Settings -- 4.2 Predictive Accuracy -- 4.3 Ablation Studies -- 4.4 Uncertainty Label and Conservative Classification -- 4.5 Testing on Out-of-Distribution Data -- 5 Conclusion and Future Work -- References -- Learning Weakly Convex Sets in Metric Spaces -- 1 Introduction -- 2 Preliminaries -- 3 Weak Convexity in Metric Spaces -- 3.1 Some Basic Properties of Weakly Convex Sets -- 4 Learning in the Extensional Problem Setting -- 4.1 Application Scenario: Vertex Classification -- 5 The Intensional Problem Setting -- 5.1 Learning Weakly Convex Boolean Functions -- 5.2 Learning Weakly Convex Axis-Aligned Hyperrectangles -- 6 Concluding Remarks -- References -- Disparity Between Batches as a Signal for Early Stopping -- 1 Introduction -- 2 Related Work -- 3 Generalization Penalty -- 4 Gradient Disparity -- 5 Early Stopping Criterion -- 6 Discussion and Final Remarks -- References -- Learning from Noisy Similar and Dissimilar Data -- 1 Introduction -- 2 Problem Setup -- 3 Loss Correction Approach -- 4 Weighted Classification Approach -- 5 Experiments -- 6 Conclusion and Future Work -- References -- Knowledge Distillation with Distribution Mismatch -- 1 Introduction -- 2 Related Works -- 3 Framework -- 3.1 Problem Definition -- 3.2 Proposed Method KDDM -- 4 Experiments and Discussions -- 4.1 Datasets -- 4.2 Baselines -- 4.3 Results on MNIST -- 4.4 Results on CIFAR-10 -- 4.5 Results on CIFAR-100 -- 4.6 Distillation When Teacher-Data and Student-Data Are Identical -- 5 Conclusion -- References -- Certification of Model Robustness in Active Class Selection -- 1 Introduction -- 1.1 Active Class Selection Constitutes a Domain Gap -- 1.2 A Qualitative Intuition from Information Theory -- 2 A Quantitative Perspective from Learning Theory.
2.1 Quantification of the Domain Gap -- 2.2 Certification of Domain Robustness for Binary Predictors -- 3 Experiments -- 3.1 Binary (, ) Certificates Are Tight -- 3.2 Binary (, ) Certificates in Astro-Particle Physics -- 4 Related Work -- 5 Conclusion -- References -- Graphs and Networks -- Inter-domain Multi-relational Link Prediction -- 1 Introduction -- 2 Preliminary -- 2.1 RESCAL -- 2.2 Optimal Transport -- 2.3 Maximum Mean Discrepancy -- 3 Problem Setting and Proposed Method -- 3.1 Problem Setting -- 3.2 Proposed Objective Function -- 4 Experiments -- 4.1 Datasets -- 4.2 Evaluation Methods and Baselines -- 4.3 Implementation Details -- 4.4 Experimental Results -- 5 Related Work -- 6 Conclusion and Future Work -- References -- GraphSVX: Shapley Value Explanations for Graph Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Preliminary Concepts and Background -- 3.1 Graph Neural Networks -- 3.2 The Shapley Value -- 4 A Unified Framework for GNN Explainers -- 5 Proposed Method -- 5.1 Mask and Graph Generators -- 5.2 Explanation Generator -- 5.3 Decomposition Model -- 5.4 Efficient Approximation Specific to GNNs -- 5.5 Desirable Properties of Explanations -- 6 Experimental Evaluation -- 6.1 Synthetic and Real Datasets with Ground Truth -- 6.2 Real-World Datasets Without Ground Truth -- 7 Conclusion -- References -- Multi-view Self-supervised Heterogeneous Graph Embedding -- 1 Introduction -- 2 Related Work -- 2.1 Self-supervised Learning on Graphs -- 2.2 Heterogeneous Graph Embedding -- 3 The Proposed Model -- 3.1 Model Framework -- 3.2 Heterogeneous Context Encoding -- 3.3 Multi-view Contrastive Learning -- 4 Experiment -- 4.1 Experimental Setup -- 4.2 Node Classification -- 4.3 Link Prediction -- 4.4 Ablation Study -- 4.5 Visualization -- 5 Conclusion -- References.
Semantic-Specific Hierarchical Alignment Network for Heterogeneous Graph Adaptation.
Record Nr. UNISA-996464527703316
Cham, Switzerland : , : Springer International Publishing, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Pervasive Computing Paradigms for Mental Health : Selected Papers from MindCare 2016, Fabulous 2016, and IIoT 2015 / / edited by Nuria Oliver, Silvia Serino, Aleksandar Matic, Pietro Cipresso, Nenad Filipovic, Liljana Gavrilovska
Pervasive Computing Paradigms for Mental Health : Selected Papers from MindCare 2016, Fabulous 2016, and IIoT 2015 / / edited by Nuria Oliver, Silvia Serino, Aleksandar Matic, Pietro Cipresso, Nenad Filipovic, Liljana Gavrilovska
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XV, 174 p. 57 illus.)
Disciplina 502.85
Collana Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
Soggetto topico Medical informatics
Computer engineering
Computer networks
Artificial intelligence
Health Informatics
Computer Engineering and Networks
Artificial Intelligence
Computer Communication Networks
ISBN 9783319749358
3319749358
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Computer-Based Programs as Suitable Intervention Tools for Older People with Mental Disorders -- ONParkinson – Innovative mHealth to support the triad: patient, carer and health professional -- A Process for Selecting and Validating Awe-Inducing Audio-Visual Stimuli -- A Play Therapy based Full-body Interaction Intervention Tool for Children with Autism -- Stress Detection from Speech Using Spectral Slope Measurements -- Technological devices as an opportunity for people with Parkinson -- just Physio kidding - NUI and Gamification based Therapeutic Intervention for Children with Special Needs -- An innovative virtual reality-based training program for the rehabilitation of cognitive frail patients -- COLLEGO: An Interactive Platform for Studying Joint Action During an Ecological Collaboration Task -- Mobile applications as good intervention tools for individuals with depression -- Assessment of mechanical stiffness of jumping using force plate -- Numerical modeling of drug delivery in organs:from CT scans to FE model -- FPGA Implementation of Face Recognition Algorithm -- Persons Counting and Monitoring System based on Passive Infrared Sensors and Ultrasonic Sensors (PIRUS) -- Personalized and intelligent sleep lifestyle reasoner with web application for improving quality of sleep part of AAL architecture -- Implementation of Daily Functioning and Habits Building Reasoner part of AAL Architecture -- 5G-TCP: Enhanced transport protocol for Future Mobile Networks -- Monitoring the Black Sea Region using Satellite Earth Observation and Ground Telemetry -- Multi-microphone Noise Reduction System Integrating Nonlinear Multi-band Spectral Subtraction -- Practical Implementation Aspects of the Data Timed Sending (DTS) Protocol Using Wake-up Radio (WuR) -- Intrusion Prevention System Evaluation for SDN-enabled IoT Networks -- A Privacy Scheme for Monitoring Devices in the Internet of Things -- How to Deal with Interoperability Testing in The Challenging and Ever-changing Context of IoT -- Wi-Suite: Tools and Services for Managing IoT Infrastructures.  .
Record Nr. UNINA-9910299274603321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare / / general chairs, Nuria Oliver, Mary Czerwinski
Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare / / general chairs, Nuria Oliver, Mary Czerwinski
Pubbl/distr/stampa New York : , : ACM, , 2017
Descrizione fisica 1 online resource (503 pages)
Disciplina 004
Soggetto topico Ubiquitous computing
Medical informatics
Medical telematics
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti PervasiveHealth '17 : 11th EAI International Conference on Pervasive Computing Technologies for Healthcare : Barcelona, Spain, May 23-2
Record Nr. UNINA-9910376033203321
New York : , : ACM, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
User Modeling, Adaptation and Personalization : 19th International Conference, UMAP 2011, Girona, Spain, July 11-15, 2011 / / edited by Joseph Konstan, Ricardo Conejo, Jose L. Marzo, Nuria Oliver
User Modeling, Adaptation and Personalization : 19th International Conference, UMAP 2011, Girona, Spain, July 11-15, 2011 / / edited by Joseph Konstan, Ricardo Conejo, Jose L. Marzo, Nuria Oliver
Edizione [1st ed. 2011.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Descrizione fisica 1 online resource (XIX, 464 p.)
Disciplina 005.7
Collana Information Systems and Applications, incl. Internet/Web, and HCI
Soggetto topico Application software
Information storage and retrieval
Artificial intelligence
Computer communication systems
Algorithms
Database management
Information Systems Applications (incl. Internet)
Information Storage and Retrieval
Artificial Intelligence
Computer Communication Networks
Algorithm Analysis and Problem Complexity
Database Management
ISBN 3-642-22362-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti UMAP'11
Record Nr. UNISA-996465502703316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui