Vai al contenuto principale della pagina

Dynamic Parameter Adaptation for Meta-Heuristic Optimization Algorithms Through Type-2 Fuzzy Logic / / by Frumen Olivas, Fevrier Valdez, Oscar Castillo, Patricia Melin



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Olivas Frumen Visualizza persona
Titolo: Dynamic Parameter Adaptation for Meta-Heuristic Optimization Algorithms Through Type-2 Fuzzy Logic / / by Frumen Olivas, Fevrier Valdez, Oscar Castillo, Patricia Melin Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Edizione: 1st ed. 2018.
Descrizione fisica: 1 online resource (110 pages)
Disciplina: 006.3
Soggetto topico: Computational intelligence
Artificial intelligence
Computational Intelligence
Artificial Intelligence
Persona (resp. second.): ValdezFevrier
CastilloOscar
MelinPatricia
Nota di contenuto: Introduction -- Theory and Background -- Problems Statement -- Methodology -- Simulation Results -- Statistical Analysis and Comparison of Results.
Sommario/riassunto: In this book, a methodology for parameter adaptation in meta-heuristic op-timization methods is proposed. This methodology is based on using met-rics about the population of the meta-heuristic methods, to decide through a fuzzy inference system the best parameter values that were carefully se-lected to be adjusted. With this modification of parameters we want to find a better model of the behavior of the optimization method, because with the modification of parameters, these will affect directly the way in which the global or local search are performed. Three different optimization methods were used to verify the improve-ment of the proposed methodology. In this case the optimization methods are: PSO (Particle Swarm Optimization), ACO (Ant Colony Optimization) and GSA (Gravitational Search Algorithm), where some parameters are se-lected to be dynamically adjusted, and these parameters have the most im-pact in the behavior of each optimization method. Simulation results show that the proposed methodology helps to each optimization method in obtaining better results than the results obtained by the original method without parameter adjustment.
Titolo autorizzato: Dynamic Parameter Adaptation for Meta-Heuristic Optimization Algorithms Through Type-2 Fuzzy Logic  Visualizza cluster
ISBN: 3-319-70851-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910299940403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in Computational Intelligence, . 2625-3704