Analytic Continuation and q-Convexity / Takeo Ohsawa, Thomas Pawlaschyk
| Analytic Continuation and q-Convexity / Takeo Ohsawa, Thomas Pawlaschyk |
| Autore | Ohsawa, Takeo |
| Pubbl/distr/stampa | Singapore, : Springer, 2022 |
| Descrizione fisica | xiii, 58 p. : ill. ; 24 cm |
| Altri autori (Persone) | Pawlaschyk, Thomas |
| Soggetto topico |
32-XX - Several complex variables and analytic spaces [MSC 2020]
32F10 - q-convexity, q-concavity [MSC 2020] |
| Soggetto non controllato |
Analysis in several complex variables
Analytic Continuation Generalized pseudoconvexity q-convex q-pseudoconvex |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0278305 |
Ohsawa, Takeo
|
||
| Singapore, : Springer, 2022 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Analytic Continuation and q-Convexity / Takeo Ohsawa, Thomas Pawlaschyk
| Analytic Continuation and q-Convexity / Takeo Ohsawa, Thomas Pawlaschyk |
| Autore | Ohsawa, Takeo |
| Pubbl/distr/stampa | Singapore, : Springer, 2022 |
| Descrizione fisica | xiii, 58 p. : ill. ; 24 cm |
| Altri autori (Persone) | Pawlaschyk, Thomas |
| Soggetto topico |
32-XX - Several complex variables and analytic spaces [MSC 2020]
32F10 - q-convexity, q-concavity [MSC 2020] |
| Soggetto non controllato |
Analysis in several complex variables
Analytic Continuation Generalized pseudoconvexity q-convex q-pseudoconvex |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00278305 |
Ohsawa, Takeo
|
||
| Singapore, : Springer, 2022 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Bousfield Classes and Ohkawa's Theorem : Nagoya, Japan, August 28-30, 2015 / Takeo Ohsawa, Norihiko Minami editors
| Bousfield Classes and Ohkawa's Theorem : Nagoya, Japan, August 28-30, 2015 / Takeo Ohsawa, Norihiko Minami editors |
| Pubbl/distr/stampa | Singapore, : Springer, 2020 |
| Descrizione fisica | x, 435 p. : ill. ; 24 cm |
| Soggetto topico |
14Lxx - Algebraic groups [MSC 2020]
16Exx - Homological methods in associative algebras [MSC 2020] 32Gxx - Deformations of analytic structures [MSC 2020] 14Fxx - (Co)homology theory in algebraic geometry [MSC 2020] 55Nxx - Homology and cohomology theories in algebraic topology [MSC 2020] 55Pxx - Homotopy theory [MSC 2020] 18Dxx - Categorical structures [MSC 2020] 18Fxx - Categories in geometry and topology [MSC 2020] 19Exx - K-theory in geometry [MSC 2020] |
| Soggetto non controllato |
Bousfield class
Dualities of Tannakian type Motivic stable cohomology Ohkawa's theorem Stable homotopy theory |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0250085 |
| Singapore, : Springer, 2020 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Bousfield Classes and Ohkawa's Theorem : Nagoya, Japan, August 28-30, 2015 / Takeo Ohsawa, Norihiko Minami editors
| Bousfield Classes and Ohkawa's Theorem : Nagoya, Japan, August 28-30, 2015 / Takeo Ohsawa, Norihiko Minami editors |
| Pubbl/distr/stampa | Singapore, : Springer, 2020 |
| Descrizione fisica | x, 435 p. : ill. ; 24 cm |
| Soggetto topico |
14Fxx - (Co)homology theory in algebraic geometry [MSC 2020]
14Lxx - Algebraic groups [MSC 2020] 16Exx - Homological methods in associative algebras [MSC 2020] 18Dxx - Categorical structures [MSC 2020] 18Fxx - Categories in geometry and topology [MSC 2020] 19Exx - K-theory in geometry [MSC 2020] 32Gxx - Deformations of analytic structures [MSC 2020] 55Nxx - Homology and cohomology theories in algebraic topology [MSC 2020] 55Pxx - Homotopy theory [MSC 2020] |
| Soggetto non controllato |
Bousfield class
Dualities of Tannakian type Motivic stable cohomology Ohkawa's theorem Stable homotopy theory |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00250085 |
| Singapore, : Springer, 2020 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
L2 approaches in several complex variables : Towards the Oka–Cartan Theory with Precise Bounds / Takeo Ohsawa
| L2 approaches in several complex variables : Towards the Oka–Cartan Theory with Precise Bounds / Takeo Ohsawa |
| Autore | Ohsawa, Takeo |
| Edizione | [2. ed] |
| Pubbl/distr/stampa | Tokyo, : Springer, 2018 |
| Descrizione fisica | xi, 258 p. ; 24 cm |
| Soggetto topico |
32A25 - Integral representations; canonical kernels (Szegó, Bergman, etc.) [MSC 2020]
32C35 - Analytic sheaves and cohomology groups [MSC 2020] 32W05 - $\overline\partial$ and $\overline\partial$-Neumann operators [MSC 2020] 32D15 - Continuation of analytic objects in several complex variables [MSC 2020] 32-XX - Several complex variables and analytic spaces [MSC 2020] 32F32 - Analytical consequences of geometric convexity (vanishing theorems, etc.) [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0125084 |
Ohsawa, Takeo
|
||
| Tokyo, : Springer, 2018 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
L2 approaches in several complex variables : Towards the Oka–Cartan Theory with Precise Bounds / Takeo Ohsawa
| L2 approaches in several complex variables : Towards the Oka–Cartan Theory with Precise Bounds / Takeo Ohsawa |
| Autore | Ohsawa, Takeo |
| Edizione | [2. ed] |
| Pubbl/distr/stampa | Tokyo, : Springer, 2018 |
| Descrizione fisica | xi, 258 p. ; 24 cm |
| Soggetto topico |
32A25 - Integral representations; canonical kernels (Szegó, Bergman, etc.) [MSC 2020]
32C35 - Analytic sheaves and cohomology groups [MSC 2020] 32W05 - $\overline\partial$ and $\overline\partial$-Neumann operators [MSC 2020] 32D15 - Continuation of analytic objects in several complex variables [MSC 2020] 32-XX - Several complex variables and analytic spaces [MSC 2020] 32F32 - Analytical consequences of geometric convexity (vanishing theorems, etc.) [MSC 2020] |
| Soggetto non controllato |
Bergman Kernels
Levi flat hypersurfaces L² extension of holomorphic functions Multiplier ideals Vanishing and finiteness theorems |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0125084 |
Ohsawa, Takeo
|
||
| Tokyo, : Springer, 2018 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
L2 approaches in several complex variables : Towards the Oka–Cartan Theory with Precise Bounds / Takeo Ohsawa
| L2 approaches in several complex variables : Towards the Oka–Cartan Theory with Precise Bounds / Takeo Ohsawa |
| Autore | Ohsawa, Takeo |
| Edizione | [2. ed] |
| Pubbl/distr/stampa | Tokyo, : Springer, 2018 |
| Descrizione fisica | xi, 258 p. ; 24 cm |
| Soggetto topico |
32-XX - Several complex variables and analytic spaces [MSC 2020]
32A25 - Integral representations; canonical kernels (Szegó, Bergman, etc.) [MSC 2020] 32C35 - Analytic sheaves and cohomology groups [MSC 2020] 32D15 - Continuation of analytic objects in several complex variables [MSC 2020] 32F32 - Analytical consequences of geometric convexity (vanishing theorems, etc.) [MSC 2020] 32W05 - $\overline\partial$ and $\overline\partial$-Neumann operators [MSC 2020] |
| Soggetto non controllato |
Bergman Kernels
Levi flat hypersurfaces L² extension of holomorphic functions Multiplier ideals Vanishing and finiteness theorems |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00125084 |
Ohsawa, Takeo
|
||
| Tokyo, : Springer, 2018 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
L2 approaches in several complex variables : development of Oka–Cartan theory by L2 estimates for the [d-bar] operator] / Takeo Ohsawa
| L2 approaches in several complex variables : development of Oka–Cartan theory by L2 estimates for the [d-bar] operator] / Takeo Ohsawa |
| Autore | Ohsawa, Takeo |
| Pubbl/distr/stampa | Tokyo, : Springer, 2015 |
| Descrizione fisica | IX, 196 p. ; 24 cm |
| Soggetto topico |
32A25 - Integral representations; canonical kernels (Szegó, Bergman, etc.) [MSC 2020]
32C35 - Analytic sheaves and cohomology groups [MSC 2020] 32W05 - $\overline\partial$ and $\overline\partial$-Neumann operators [MSC 2020] 32D15 - Continuation of analytic objects in several complex variables [MSC 2020] 32-XX - Several complex variables and analytic spaces [MSC 2020] 32F32 - Analytical consequences of geometric convexity (vanishing theorems, etc.) [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0113989 |
Ohsawa, Takeo
|
||
| Tokyo, : Springer, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
L2 approaches in several complex variables : development of Oka–Cartan theory by L2 estimates for the [d-bar] operator] / Takeo Ohsawa
| L2 approaches in several complex variables : development of Oka–Cartan theory by L2 estimates for the [d-bar] operator] / Takeo Ohsawa |
| Autore | Ohsawa, Takeo |
| Pubbl/distr/stampa | Tokyo, : Springer, 2015 |
| Descrizione fisica | IX, 196 p. ; 24 cm |
| Soggetto topico |
32-XX - Several complex variables and analytic spaces [MSC 2020]
32A25 - Integral representations; canonical kernels (Szegó, Bergman, etc.) [MSC 2020] 32C35 - Analytic sheaves and cohomology groups [MSC 2020] 32D15 - Continuation of analytic objects in several complex variables [MSC 2020] 32F32 - Analytical consequences of geometric convexity (vanishing theorems, etc.) [MSC 2020] 32W05 - $\overline\partial$ and $\overline\partial$-Neumann operators [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00113989 |
Ohsawa, Takeo
|
||
| Tokyo, : Springer, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
L2 approaches in several complex variables : development of Oka–Cartan theory by L2 estimates for the [d-bar] operator] / Takeo Ohsawa
| L2 approaches in several complex variables : development of Oka–Cartan theory by L2 estimates for the [d-bar] operator] / Takeo Ohsawa |
| Autore | Ohsawa, Takeo |
| Edizione | [Tokyo : Springer, 2015] |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Soggetto topico |
32A25 - Integral representations; canonical kernels (Szegó, Bergman, etc.) [MSC 2020]
32C35 - Analytic sheaves and cohomology groups [MSC 2020] 32W05 - $\overline\partial$ and $\overline\partial$-Neumann operators [MSC 2020] 32D15 - Continuation of analytic objects in several complex variables [MSC 2020] 32-XX - Several complex variables and analytic spaces [MSC 2020] 32F32 - Analytical consequences of geometric convexity (vanishing theorems, etc.) [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0113989 |
Ohsawa, Takeo
|
||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||