top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Inverse synthetic aperture radar imaging with MATLAB algorithms : with advanced sar/isar imaging concepts, algorithms, and matlab codes / / Caner Özdemir, PhD Mersin University, Mersin, Turkey
Inverse synthetic aperture radar imaging with MATLAB algorithms : with advanced sar/isar imaging concepts, algorithms, and matlab codes / / Caner Özdemir, PhD Mersin University, Mersin, Turkey
Autore Özdemir Caner
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2021]
Descrizione fisica 1 online resource (xxii, 634 pages) : illustrations
Disciplina 620.00151
Collana Wiley series in microwave and optical engineering
Soggetto genere / forma Electronic books.
ISBN 1-5231-4356-8
1-119-52139-4
1-119-52136-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface to the Second Edition -- Acknowledgments -- Acronyms -- Chapter 1 Basics of Fourier Analysis -- 1.1 Forward and Inverse Fourier Transform -- 1.1.1 Brief History of FT -- 1.1.2 Forward FT Operation -- 1.1.3 IFT -- 1.2 FT Rules and Pairs -- 1.2.1 Linearity -- 1.2.2 Time Shifting -- 1.2.3 Frequency Shifting -- 1.2.4 Scaling -- 1.2.5 Duality -- 1.2.6 Time Reversal -- 1.2.7 Conjugation -- 1.2.8 Multiplication -- 1.2.9 Convolution -- 1.2.10 Modulation -- 1.2.11 Derivation and Integration -- 1.2.12 Parseval's Relationship -- 1.3 Time-Frequency Representation of a Signal -- 1.3.1 Signal in the Time Domain -- 1.3.2 Signal in the Frequency Domain -- 1.3.3 Signal in the Joint Time-Frequency (JTF) Plane -- 1.4 Convolution and Multiplication Using FT -- 1.5 Filtering/Windowing -- 1.6 Data Sampling -- 1.7 DFT and FFT -- 1.7.1 DFT -- 1.7.2 FFT -- 1.7.3 Bandwidth and Resolutions -- 1.8 Aliasing -- 1.9 Importance of FT in Radar Imaging -- 1.10 Effect of Aliasing in Radar Imaging -- 1.11 Matlab Codes -- References -- Chapter 2 Radar Fundamentals -- 2.1 Electromagnetic Scattering -- 2.2 Scattering from PECs -- 2.3 Radar Cross Section -- 2.3.1 Definition of RCS -- 2.3.2 RCS of Simple-Shaped Objects -- 2.3.3 RCS of Complex-Shaped Objects -- 2.4 Radar Range Equation -- 2.4.1 Bistatic Case -- 2.4.2 Monostatic Case -- 2.5 Range of Radar Detection -- 2.5.1 Signal-to-Noise Ratio -- 2.6 Radar Waveforms -- 2.6.1 Continuous Wave -- 2.6.2 Frequency-Modulated Continuous Wave -- 2.6.3 Stepped-Frequency Continuous Wave -- 2.6.4 Short Pulse -- 2.6.5 Chirp (LFM) Pulse -- 2.7 Pulsed Radar -- 2.7.1 Pulse Repetition Frequency -- 2.7.2 Maximum Range and Range Ambiguity -- 2.7.3 Doppler Frequency -- 2.8 Matlab Codes -- References -- Chapter 3 Synthetic Aperture Radar -- 3.1 SAR Modes -- 3.2 SAR System Design.
3.3 Resolutions in SAR -- 3.4 SAR Image Formation -- 3.5 Range Compression -- 3.5.1 Matched Filter -- 3.5.1.1 Computing Matched Filter Output via Fourier Processing -- 3.5.1.2 Example for Matched Filtering -- 3.5.2 Ambiguity Function -- 3.5.2.1 Relation to Matched Filter -- 3.5.2.2 Ideal Ambiguity Function -- 3.5.2.3 Rectangular-Pulse Ambiguity Function -- 3.5.2.4 LFM-Pulse Ambiguity Function -- 3.5.3 Pulse Compression -- 3.5.3.1 Detailed Processing of Pulse Compression -- 3.5.3.2 Bandwidth, Resolution, and Compression Issues for LFM Signal -- 3.5.3.3 Pulse Compression Example -- 3.6 Azimuth Compression -- 3.6.1 Processing in Azimuth -- 3.6.2 Azimuth Resolution -- 3.6.3 Relation to ISAR -- 3.7 SAR Imaging -- 3.8 SAR Focusing Algorithms -- 3.8.1 RDA -- 3.8.1.1 Range Compression in RDA -- 3.8.1.2 Azimuth Fourier Transform -- 3.8.1.3 Range Cell Migration Correction -- 3.8.1.4 Azimuth Compression -- 3.8.1.5 Simulated SAR Imaging Example -- 3.8.1.6 Drawbacks of RDA -- 3.8.2 Chirp Scaling Algorithm -- 3.8.3 The ω-kA -- 3.8.4 Back-Projection Algorithm -- 3.9 Example of a Real SAR Imagery -- 3.10 Problems in SAR Imaging -- 3.10.1 Range Migration and Range Walk -- 3.10.2 Motion Errors -- 3.10.3 Speckle Noise -- 3.11 Advanced Topics in SAR -- 3.11.1 SAR Interferometry -- 3.11.2 SAR Polarimetry -- 3.12 Matlab Codes -- References -- Chapter 4 Inverse Synthetic Aperture Radar Imaging and Its Basic Concepts -- 4.1 SAR versus ISAR -- 4.2 The Relation of Scattered Field to the Image Function in ISAR -- 4.3 One-Dimensional (1D) Range Profile -- 4.4 1D Cross-Range Profile -- 4.5 Two-Dimensional (2D) ISAR Image Formation (Small Bandwidth, Small Angle) -- 4.5.1 Resolutions in ISAR -- 4.5.1.1 Range Resolution -- 4.5.1.2 Cross-Range Resolution: -- 4.5.2 Range and Cross-Range Extends -- 4.5.3 Imaging Multibounces in ISAR -- 4.5.4 Sample Design Procedure for ISAR.
4.5.4.1 ISAR Design Example #1: "Aircraft Target -- 4.5.4.2 ISAR Design Example #2: "Military Tank Target -- 4.6 2D ISAR Image Formation (Wide Bandwidth, Large Angles) -- 4.6.1 Direct Integration -- 4.6.2 Polar Reformatting -- 4.7 3D ISAR Image Formation -- 4.7.1 Range and Cross-Range resolutions -- 4.7.2 A Design Example for 3D ISAR -- 4.8 Matlab Codes -- References -- Chapter 5 Imaging Issues in Inverse Synthetic Aperture Radar -- 5.1 Fourier-Related Issues -- 5.1.1 DFT Revisited -- 5.1.2 Positive and Negative Frequencies in DFT -- 5.2 Image Aliasing -- 5.3 Polar Reformatting Revisited -- 5.3.1 Nearest Neighbor Interpolation -- 5.3.2 Bilinear Interpolation -- 5.4 Zero Padding -- 5.5 Point Spread Function -- 5.6 Windowing -- 5.6.1 Common Windowing Functions -- 5.6.1.1 Rectangular Window -- 5.6.1.2 Triangular Window -- 5.6.1.3 Hanning Window -- 5.6.1.4 Hamming Window -- 5.6.1.5 Kaiser Window -- 5.6.1.6 Blackman Window -- 5.6.1.7 Chebyshev Window -- 5.6.2 ISAR Image Smoothing via Windowing -- 5.7 Matlab Codes -- References -- Chapter 6 Range-Doppler Inverse Synthetic Aperture Radar Processing -- 6.1 Scenarios for ISAR -- 6.1.1 Imaging Aerial Targets via Ground-Based Radar -- 6.1.2 Imaging Ground/Sea Targets via Aerial Radar -- 6.2 ISAR Waveforms for Range-Doppler Processing -- 6.2.1 Chirp Pulse Train -- 6.2.2 Stepped Frequency Pulse Train -- 6.3 Doppler Shift's Relation to Cross-Range -- 6.3.1 Doppler Frequency Shift Resolution -- 6.3.2 Resolving Doppler Shift and Cross-Range -- 6.4 Forming the Range-Doppler Image -- 6.5 ISAR Receiver -- 6.5.1 ISAR Receiver for Chirp Pulse Radar -- 6.5.2 ISAR Receiver for SFCW Radar -- 6.6 Quadrature Detection -- 6.6.1 I-Channel Processing -- 6.6.2 Q-Channel Processing -- 6.7 Range Alignment -- 6.8 Defining the Range-Doppler ISAR Imaging Parameters -- 6.8.1 Image Frame Dimension (Image Extends).
6.8.2 Range and Cross-Range Resolution -- 6.8.3 Frequency Bandwidth and the Center Frequency -- 6.8.4 Doppler Frequency Bandwidth -- 6.8.5 Pulse Repetition Frequency -- 6.8.6 Coherent Integration (Dwell) Time -- 6.8.7 Pulse Width -- 6.9 Example of Chirp Pulse-Based Range-Doppler ISAR Imaging -- 6.10 Example of SFCW-Based Range-Doppler ISAR Imaging -- 6.11 Matlab Codes -- References -- Chapter 7 Scattering Center Representation of Inverse Synthetic Aperture Radar -- 7.1 Scattering/Radiation Center Model -- 7.2 Extraction of Scattering Centers -- 7.2.1 Image Domain Formulation -- 7.2.1.1 Extraction in the Image Domain: The "CLEAN" Algorithm -- 7.2.1.2 Reconstruction in the Image Domain -- 7.2.2 Fourier Domain Formulation -- 7.2.2.1 Extraction in the Fourier Domain -- 7.2.2.2 Reconstruction in the Fourier Domain -- 7.3 Matlab Codes -- References -- Chapter 8 Motion Compensation for Inverse Synthetic Aperture Radar -- 8.1 Doppler Effect Due to Target Motion -- 8.2 Standard MOCOMP Procedures -- 8.2.1 Translational MOCOMP -- 8.2.1.1 Range Tracking -- 8.2.1.2 Doppler Tracking -- 8.2.2 Rotational MOCOMP -- 8.3 Popular ISAR MOCOMP Techniques -- 8.3.1 Cross-Correlation Method -- 8.3.1.1 Example for the Cross-Correlation Method -- 8.3.2 Minimum Entropy Method -- 8.3.2.1 Definition of Entropy in ISAR Images -- 8.3.2.2 Example for the Minimum Entropy Method -- 8.3.3 JTF-Based MOCOMP -- 8.3.3.1 Received Signal from a Moving Target -- 8.3.3.2 An Algorithm for JTF-Based Rotational MOCOMP -- 8.3.3.3 Example for JTF-Based Rotational MOCOMP -- 8.3.4 Algorithm for JTF-Based Translational and Rotational MOCOMP -- 8.3.4.1 A Numerical Example -- 8.4 Matlab Codes -- References -- Chapter 9 Bistatic ISAR Imaging -- 9.1 Why Bi-ISAR Imaging? -- 9.2 Geometry for Bi-Isar Imaging and the Algorithm -- 9.2.1 Bi-ISAR Imaging Algorithm for a Point Scatterer.
9.2.2 Bistatic ISAR Imaging Algorithm for a Target -- 9.3 Resolutions in Bistatic ISAR -- 9.3.1 Range Resolution -- 9.3.2 Cross-Range Resolution -- 9.3.3 Range and Cross-Range Extends -- 9.4 Design Procedure for Bi-ISAR Imaging -- 9.5 Bi-Isar Imaging Examples -- 9.5.1 Bi-ISAR Design Example #1 -- 9.5.2 Bi-ISAR Design Example #2 -- 9.6 Mu-ISAR Imaging -- 9.6.1 Challenges in Mu-ISAR Imaging -- 9.6.2 Mu-ISAR Imaging Example -- 9.7 Matlab Codes -- References -- Chapter 10 Polarimetric ISAR Imaging -- 10.1 Polarization of an Electromagnetic Wave -- 10.1.1 Polarization Type -- 10.1.2 Polarization Sensitivity -- 10.1.3 Polarization in Radar Systems -- 10.2 Polarization Scattering Matrix -- 10.2.1 Relation to RCS -- 10.2.2 Polarization Characteristics of the Scattered Wave -- 10.2.3 Polarimetric Decompositions of EM Wave Scattering -- 10.2.4 The Pauli Decomposition -- 10.2.4.1 Description of Pauli Decomposition -- 10.2.4.2 Interpretation of Pauli Decomposition -- 10.2.4.3 Polarimetric Image Representation Using Pauli Decomposition -- 10.3 Why Polarimetric ISAR Imaging? -- 10.4 ISAR Imaging with Full Polarization -- 10.4.1 ISAR Data in LP Basis -- 10.4.2 ISAR Data in CP Basis -- 10.5 Polarimetric ISAR Images -- 10.5.1 Pol-ISAR Image of a Benchmark Target -- 10.5.1.1 The "SLICY" Target -- 10.5.1.2 Fully Polarimetric EM Simulation of SLICY -- 10.5.1.3 LP Pol-ISAR Images of SLICY -- 10.5.1.4 CP Pol-ISAR Images of SLICY -- 10.5.1.5 Pauli Decomposition Image of SLICY -- 10.5.2 Pol-ISAR Image of a Complex Target -- 10.5.2.1 The "Military Tank" Target -- 10.5.2.2 Fully Polarimetric EM Simulation of "Tank" Target -- 10.5.2.3 LP Pol-ISAR Images of "Tank" Target -- 10.5.2.4 CP Pol-ISAR Images of "Tank" Target -- 10.5.2.5 Pauli Decomposition Image of "Tank" Target -- 10.6 Feature Extraction from Polarimetric Images -- 10.7 Matlab Codes -- References.
Chapter 11 Near-Field ISAR Imaging.
Record Nr. UNINA-9910555030503321
Özdemir Caner  
Hoboken, New Jersey : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Inverse synthetic aperture radar imaging with MATLAB algorithms : with advanced sar/isar imaging concepts, algorithms, and matlab codes / / Caner Özdemir, PhD Mersin University, Mersin, Turkey
Inverse synthetic aperture radar imaging with MATLAB algorithms : with advanced sar/isar imaging concepts, algorithms, and matlab codes / / Caner Özdemir, PhD Mersin University, Mersin, Turkey
Autore Özdemir Caner
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2021]
Descrizione fisica 1 online resource (xxii, 634 pages) : illustrations
Disciplina 620.00151
Collana Wiley series in microwave and optical engineering
ISBN 1-5231-4356-8
1-119-52139-4
1-119-52136-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface to the Second Edition -- Acknowledgments -- Acronyms -- Chapter 1 Basics of Fourier Analysis -- 1.1 Forward and Inverse Fourier Transform -- 1.1.1 Brief History of FT -- 1.1.2 Forward FT Operation -- 1.1.3 IFT -- 1.2 FT Rules and Pairs -- 1.2.1 Linearity -- 1.2.2 Time Shifting -- 1.2.3 Frequency Shifting -- 1.2.4 Scaling -- 1.2.5 Duality -- 1.2.6 Time Reversal -- 1.2.7 Conjugation -- 1.2.8 Multiplication -- 1.2.9 Convolution -- 1.2.10 Modulation -- 1.2.11 Derivation and Integration -- 1.2.12 Parseval's Relationship -- 1.3 Time-Frequency Representation of a Signal -- 1.3.1 Signal in the Time Domain -- 1.3.2 Signal in the Frequency Domain -- 1.3.3 Signal in the Joint Time-Frequency (JTF) Plane -- 1.4 Convolution and Multiplication Using FT -- 1.5 Filtering/Windowing -- 1.6 Data Sampling -- 1.7 DFT and FFT -- 1.7.1 DFT -- 1.7.2 FFT -- 1.7.3 Bandwidth and Resolutions -- 1.8 Aliasing -- 1.9 Importance of FT in Radar Imaging -- 1.10 Effect of Aliasing in Radar Imaging -- 1.11 Matlab Codes -- References -- Chapter 2 Radar Fundamentals -- 2.1 Electromagnetic Scattering -- 2.2 Scattering from PECs -- 2.3 Radar Cross Section -- 2.3.1 Definition of RCS -- 2.3.2 RCS of Simple-Shaped Objects -- 2.3.3 RCS of Complex-Shaped Objects -- 2.4 Radar Range Equation -- 2.4.1 Bistatic Case -- 2.4.2 Monostatic Case -- 2.5 Range of Radar Detection -- 2.5.1 Signal-to-Noise Ratio -- 2.6 Radar Waveforms -- 2.6.1 Continuous Wave -- 2.6.2 Frequency-Modulated Continuous Wave -- 2.6.3 Stepped-Frequency Continuous Wave -- 2.6.4 Short Pulse -- 2.6.5 Chirp (LFM) Pulse -- 2.7 Pulsed Radar -- 2.7.1 Pulse Repetition Frequency -- 2.7.2 Maximum Range and Range Ambiguity -- 2.7.3 Doppler Frequency -- 2.8 Matlab Codes -- References -- Chapter 3 Synthetic Aperture Radar -- 3.1 SAR Modes -- 3.2 SAR System Design.
3.3 Resolutions in SAR -- 3.4 SAR Image Formation -- 3.5 Range Compression -- 3.5.1 Matched Filter -- 3.5.1.1 Computing Matched Filter Output via Fourier Processing -- 3.5.1.2 Example for Matched Filtering -- 3.5.2 Ambiguity Function -- 3.5.2.1 Relation to Matched Filter -- 3.5.2.2 Ideal Ambiguity Function -- 3.5.2.3 Rectangular-Pulse Ambiguity Function -- 3.5.2.4 LFM-Pulse Ambiguity Function -- 3.5.3 Pulse Compression -- 3.5.3.1 Detailed Processing of Pulse Compression -- 3.5.3.2 Bandwidth, Resolution, and Compression Issues for LFM Signal -- 3.5.3.3 Pulse Compression Example -- 3.6 Azimuth Compression -- 3.6.1 Processing in Azimuth -- 3.6.2 Azimuth Resolution -- 3.6.3 Relation to ISAR -- 3.7 SAR Imaging -- 3.8 SAR Focusing Algorithms -- 3.8.1 RDA -- 3.8.1.1 Range Compression in RDA -- 3.8.1.2 Azimuth Fourier Transform -- 3.8.1.3 Range Cell Migration Correction -- 3.8.1.4 Azimuth Compression -- 3.8.1.5 Simulated SAR Imaging Example -- 3.8.1.6 Drawbacks of RDA -- 3.8.2 Chirp Scaling Algorithm -- 3.8.3 The ω-kA -- 3.8.4 Back-Projection Algorithm -- 3.9 Example of a Real SAR Imagery -- 3.10 Problems in SAR Imaging -- 3.10.1 Range Migration and Range Walk -- 3.10.2 Motion Errors -- 3.10.3 Speckle Noise -- 3.11 Advanced Topics in SAR -- 3.11.1 SAR Interferometry -- 3.11.2 SAR Polarimetry -- 3.12 Matlab Codes -- References -- Chapter 4 Inverse Synthetic Aperture Radar Imaging and Its Basic Concepts -- 4.1 SAR versus ISAR -- 4.2 The Relation of Scattered Field to the Image Function in ISAR -- 4.3 One-Dimensional (1D) Range Profile -- 4.4 1D Cross-Range Profile -- 4.5 Two-Dimensional (2D) ISAR Image Formation (Small Bandwidth, Small Angle) -- 4.5.1 Resolutions in ISAR -- 4.5.1.1 Range Resolution -- 4.5.1.2 Cross-Range Resolution: -- 4.5.2 Range and Cross-Range Extends -- 4.5.3 Imaging Multibounces in ISAR -- 4.5.4 Sample Design Procedure for ISAR.
4.5.4.1 ISAR Design Example #1: "Aircraft Target -- 4.5.4.2 ISAR Design Example #2: "Military Tank Target -- 4.6 2D ISAR Image Formation (Wide Bandwidth, Large Angles) -- 4.6.1 Direct Integration -- 4.6.2 Polar Reformatting -- 4.7 3D ISAR Image Formation -- 4.7.1 Range and Cross-Range resolutions -- 4.7.2 A Design Example for 3D ISAR -- 4.8 Matlab Codes -- References -- Chapter 5 Imaging Issues in Inverse Synthetic Aperture Radar -- 5.1 Fourier-Related Issues -- 5.1.1 DFT Revisited -- 5.1.2 Positive and Negative Frequencies in DFT -- 5.2 Image Aliasing -- 5.3 Polar Reformatting Revisited -- 5.3.1 Nearest Neighbor Interpolation -- 5.3.2 Bilinear Interpolation -- 5.4 Zero Padding -- 5.5 Point Spread Function -- 5.6 Windowing -- 5.6.1 Common Windowing Functions -- 5.6.1.1 Rectangular Window -- 5.6.1.2 Triangular Window -- 5.6.1.3 Hanning Window -- 5.6.1.4 Hamming Window -- 5.6.1.5 Kaiser Window -- 5.6.1.6 Blackman Window -- 5.6.1.7 Chebyshev Window -- 5.6.2 ISAR Image Smoothing via Windowing -- 5.7 Matlab Codes -- References -- Chapter 6 Range-Doppler Inverse Synthetic Aperture Radar Processing -- 6.1 Scenarios for ISAR -- 6.1.1 Imaging Aerial Targets via Ground-Based Radar -- 6.1.2 Imaging Ground/Sea Targets via Aerial Radar -- 6.2 ISAR Waveforms for Range-Doppler Processing -- 6.2.1 Chirp Pulse Train -- 6.2.2 Stepped Frequency Pulse Train -- 6.3 Doppler Shift's Relation to Cross-Range -- 6.3.1 Doppler Frequency Shift Resolution -- 6.3.2 Resolving Doppler Shift and Cross-Range -- 6.4 Forming the Range-Doppler Image -- 6.5 ISAR Receiver -- 6.5.1 ISAR Receiver for Chirp Pulse Radar -- 6.5.2 ISAR Receiver for SFCW Radar -- 6.6 Quadrature Detection -- 6.6.1 I-Channel Processing -- 6.6.2 Q-Channel Processing -- 6.7 Range Alignment -- 6.8 Defining the Range-Doppler ISAR Imaging Parameters -- 6.8.1 Image Frame Dimension (Image Extends).
6.8.2 Range and Cross-Range Resolution -- 6.8.3 Frequency Bandwidth and the Center Frequency -- 6.8.4 Doppler Frequency Bandwidth -- 6.8.5 Pulse Repetition Frequency -- 6.8.6 Coherent Integration (Dwell) Time -- 6.8.7 Pulse Width -- 6.9 Example of Chirp Pulse-Based Range-Doppler ISAR Imaging -- 6.10 Example of SFCW-Based Range-Doppler ISAR Imaging -- 6.11 Matlab Codes -- References -- Chapter 7 Scattering Center Representation of Inverse Synthetic Aperture Radar -- 7.1 Scattering/Radiation Center Model -- 7.2 Extraction of Scattering Centers -- 7.2.1 Image Domain Formulation -- 7.2.1.1 Extraction in the Image Domain: The "CLEAN" Algorithm -- 7.2.1.2 Reconstruction in the Image Domain -- 7.2.2 Fourier Domain Formulation -- 7.2.2.1 Extraction in the Fourier Domain -- 7.2.2.2 Reconstruction in the Fourier Domain -- 7.3 Matlab Codes -- References -- Chapter 8 Motion Compensation for Inverse Synthetic Aperture Radar -- 8.1 Doppler Effect Due to Target Motion -- 8.2 Standard MOCOMP Procedures -- 8.2.1 Translational MOCOMP -- 8.2.1.1 Range Tracking -- 8.2.1.2 Doppler Tracking -- 8.2.2 Rotational MOCOMP -- 8.3 Popular ISAR MOCOMP Techniques -- 8.3.1 Cross-Correlation Method -- 8.3.1.1 Example for the Cross-Correlation Method -- 8.3.2 Minimum Entropy Method -- 8.3.2.1 Definition of Entropy in ISAR Images -- 8.3.2.2 Example for the Minimum Entropy Method -- 8.3.3 JTF-Based MOCOMP -- 8.3.3.1 Received Signal from a Moving Target -- 8.3.3.2 An Algorithm for JTF-Based Rotational MOCOMP -- 8.3.3.3 Example for JTF-Based Rotational MOCOMP -- 8.3.4 Algorithm for JTF-Based Translational and Rotational MOCOMP -- 8.3.4.1 A Numerical Example -- 8.4 Matlab Codes -- References -- Chapter 9 Bistatic ISAR Imaging -- 9.1 Why Bi-ISAR Imaging? -- 9.2 Geometry for Bi-Isar Imaging and the Algorithm -- 9.2.1 Bi-ISAR Imaging Algorithm for a Point Scatterer.
9.2.2 Bistatic ISAR Imaging Algorithm for a Target -- 9.3 Resolutions in Bistatic ISAR -- 9.3.1 Range Resolution -- 9.3.2 Cross-Range Resolution -- 9.3.3 Range and Cross-Range Extends -- 9.4 Design Procedure for Bi-ISAR Imaging -- 9.5 Bi-Isar Imaging Examples -- 9.5.1 Bi-ISAR Design Example #1 -- 9.5.2 Bi-ISAR Design Example #2 -- 9.6 Mu-ISAR Imaging -- 9.6.1 Challenges in Mu-ISAR Imaging -- 9.6.2 Mu-ISAR Imaging Example -- 9.7 Matlab Codes -- References -- Chapter 10 Polarimetric ISAR Imaging -- 10.1 Polarization of an Electromagnetic Wave -- 10.1.1 Polarization Type -- 10.1.2 Polarization Sensitivity -- 10.1.3 Polarization in Radar Systems -- 10.2 Polarization Scattering Matrix -- 10.2.1 Relation to RCS -- 10.2.2 Polarization Characteristics of the Scattered Wave -- 10.2.3 Polarimetric Decompositions of EM Wave Scattering -- 10.2.4 The Pauli Decomposition -- 10.2.4.1 Description of Pauli Decomposition -- 10.2.4.2 Interpretation of Pauli Decomposition -- 10.2.4.3 Polarimetric Image Representation Using Pauli Decomposition -- 10.3 Why Polarimetric ISAR Imaging? -- 10.4 ISAR Imaging with Full Polarization -- 10.4.1 ISAR Data in LP Basis -- 10.4.2 ISAR Data in CP Basis -- 10.5 Polarimetric ISAR Images -- 10.5.1 Pol-ISAR Image of a Benchmark Target -- 10.5.1.1 The "SLICY" Target -- 10.5.1.2 Fully Polarimetric EM Simulation of SLICY -- 10.5.1.3 LP Pol-ISAR Images of SLICY -- 10.5.1.4 CP Pol-ISAR Images of SLICY -- 10.5.1.5 Pauli Decomposition Image of SLICY -- 10.5.2 Pol-ISAR Image of a Complex Target -- 10.5.2.1 The "Military Tank" Target -- 10.5.2.2 Fully Polarimetric EM Simulation of "Tank" Target -- 10.5.2.3 LP Pol-ISAR Images of "Tank" Target -- 10.5.2.4 CP Pol-ISAR Images of "Tank" Target -- 10.5.2.5 Pauli Decomposition Image of "Tank" Target -- 10.6 Feature Extraction from Polarimetric Images -- 10.7 Matlab Codes -- References.
Chapter 11 Near-Field ISAR Imaging.
Record Nr. UNINA-9910829852903321
Özdemir Caner  
Hoboken, New Jersey : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Inverse synthetic aperture radar imaging with MATLAB algorithms [[electronic resource] /] / Caner Özdemir
Inverse synthetic aperture radar imaging with MATLAB algorithms [[electronic resource] /] / Caner Özdemir
Autore Özdemir Caner
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, NJ, : Wiley, c2012
Descrizione fisica 1 online resource (407 p.)
Disciplina 621.3848/5
Collana Wiley series in microwave and optical engineering
Soggetto topico Synthetic aperture radar
ISBN 1-280-67313-3
9786613650061
1-118-17805-X
1-118-17807-6
1-118-17808-4
Classificazione TEC015000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms; Contents; Preface; Acknowledgments; CHAPTER ONE: Basics of Fourier Analysis; 1.1 FORWARD AND INVERSE FOURIER TRANSFORM; 1.1.1 Brief History of FT; 1.1.2 Forward FT Operation; 1.1.3 IFT; 1.2 FT RULES AND PAIRS; 1.2.1 Linearity; 1.2.2 Time Shifting; 1.2.3 Frequency Shifting; 1.2.4 Scaling; 1.2.5 Duality; 1.2.6 Time Reversal; 1.2.7 Conjugation; 1.2.8 Multiplication; 1.2.9 Convolution; 1.2.10 Modulation; 1.2.11 Derivation and Integration; 1.2.12 Parseval's Relationship; 1.3 TIME-FREQUENCY REPRESENTATION OF A SIGNAL
1.3.1 Signal in the Time Domain 1.3.2 Signal in the Frequency Domain; 1.3.3 Signal in the (JTF) Plane; 1.4 CONVOLUTION AND MULTIPLICATION USING FT; 1.5 FILTERING/WINDOWING; 1.6 DATA SAMPLING; 1.7 DFT AND FFT; 1.7.1 DFT; 1.7.2 FFT; 1.7.3 Bandwidth and Resolutions; 1.8 ALIASING; 1.9 IMPORTANCE OF FT IN RADAR IMAGING; 1.10 EFFECT OF ALIASING IN RADAR IMAGING; 1.11 MATLAB CODES; REFERENCES; CHAPTER TWO: Radar Fundamentals; 2.1 ELECTROMAGNETIC (EM) SCATTERING; 2.2 SCATTERING FROM PECs; 2.3 RADAR CROSS SECTION (RCS); 2.3.1 Definition of RCS; 2.3.2 RCS of Simple Shaped Objects
2.3.3 RCS of Complex Shaped Objects 2.4 RADAR RANGE EQUATION; CHAPTER FOUR: Inverse Synthetic Aperture Radar Imaging and Its Basic Concepts; 4.1 SAR VERSUS ISAR; 4.2 THE RELATION OF SCATTERED FIELD TO THE IMAGE FUNCTION IN ISAR; 4.3 ONE-DIMENSIONAL (1D) RANGE PROFILE; 4.4 1D CROSS-RANGE PROFILE; 4.5 2D ISAR IMAGE FORMATION (SMALL BANDWIDTH, SMALL ANGLE); 4.5.1 Range and Cross-Range Resolutions; 4.5.2 Range and Cross-Range Extends; 4.5.3 Imaging Multi-Bounces in ISAR; 4.5.4 Sample Design Procedure for ISAR; 4.6 2D ISAR IMAGE FORMATION (WIDE BANDWIDTH, LARGE ANGLES); 4.6.1 Direct Integration
4.6.2 Polar Reformatting 4.7 3D ISAR IMAGE FORMATION; 4.7.1 Range and Cross-Range Resolutions; 4.7.2 A Design Example; 4.8 MATLAB CODES; REFERENCES; CHAPTER FIVE: Imaging Issues in Inverse Synthetic Aperture Radar; 5.1 FOURIER-RELATED ISSUES; 5.1.1 DFT Revisited; 5.1.2 Positive and Negative Frequencies in DFT; 5.2 IMAGE ALIASING; 5.3 POLAR REFORMATTING REVISITED; 5.3.1 Nearest Neighbor Interpolation; 5.3.2 Bilinear Interpolation; 5.4 ZERO PADDING; 5.5 POINT SPREAD FUNCTION (PSF); 5.6 WINDOWING; 5.6.1 Common Windowing Functions; 5.6.2 ISAR Image Smoothing via Windowing; 5.7 MATLAB CODES
REFERENCES 6.1 SCENARIOS FOR ISAR; 6.1.1 Imaging Aerial Targets via Ground-Based Radar; 6.1.2 Imaging Ground/Sea Targets via Aerial Radar; 6.2 ISAR WAVEFORMS FOR RANGE-DOPPLER PROCESSING; 6.2.1 Chirp Pulse Train; 6.2.2 Stepped Frequency Pulse Train; 6.3 DOPPLER SHIFT'S RELATION TO CROSS RANGE; 6.3.1 Doppler Frequency Shift Resolution; 6.3.2 Resolving Doppler Shift and Cross Range; 6.4 FORMING THE RANGE-DOPPLER IMAGE; 6.5 ISAR RECEIVER; 6.5.1 ISAR Receiver for Chirp Pulse Radar; 6.5.2 ISAR Receiver for SFCW Radar; 6.6 QUADRADURE DETECTION; 6.6.1 I-Channel Processing; 6.6.2 Q-Channel Processing
6.7 RANGE ALIGNMENT
Record Nr. UNINA-9910779096003321
Özdemir Caner  
Hoboken, NJ, : Wiley, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui