Artificial Intelligence in HCI : 5th International Conference, AI-HCI 2024, Held As Part of the 26th HCI International Conference, HCII 2024, Washington, DC, USA, June 29-July 4, 2024, Proceedings, Part III |
Autore | Degen Helmut |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Cham : , : Springer, , 2024 |
Descrizione fisica | 1 online resource (498 pages) |
Altri autori (Persone) | NtoaStavroula |
Collana | Lecture Notes in Computer Science Series |
ISBN | 3-031-60615-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- HCI International 2024 Thematic Areas and Affiliated Conferences -- List of Conference Proceedings Volumes Appearing Before the Conference -- Preface -- 5th International Conference on Artificial Intelligence in HCI (AI-HCI 2024) -- HCI International 2025 Conference -- Contents - Part III -- Large Language Models for Enhanced Interaction -- Enhancing Relation Extraction from Biomedical Texts by Large Language Models -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Relation Extraction via In-Context Few-Shot Learning with LLMs -- 3.2 Seq2seq-Based Relation Extraction Enhanced by LLMs -- 3.3 Classification-Based Relation Extraction Enhanced by LLMs -- 4 Experimental Settings -- 4.1 DDI Extraction Task Settings -- 4.2 LLMs and Prompts -- 4.3 PLMs for Seq2seq Methods -- 4.4 PLMs for Classification Methods -- 5 Results and Discussions -- 5.1 In-Context Few-Shot Learning-Based Relation Extraction by LLMs -- 5.2 Seq2seq-Based Relation Extraction Enhanced by LLMs -- 5.3 Classification-Based Relation Extraction Enhanced by LLMs -- 6 Conclusion -- References -- Using a LLM-Based Conversational Agent in the Social Robot Mini -- 1 Introduction -- 2 A Short History of Language Models -- 3 The Proposed System -- 3.1 Prompting -- 4 Integration into Mini -- 4.1 Design of the Conversational Agent Skill -- 5 Evaluation -- 6 Conclusions -- References -- A Proposal to Extend the Modeling Language for Interaction as Conversation for the Design of Conversational Agents -- 1 Introduction -- 2 Related Work -- 2.1 Conversational Agents -- 2.2 Modeling Interaction in Conversational Agents -- 3 MoLIC -- 4 MoLIC's Limitation to Represent Conversational Agents -- 4.1 Standardized Communication Snippets -- 4.2 Transfer of Responsibility / Interlocutor During Communication -- 4.3 Modeling Breakdown Recovery -- 4.4 Conversational Agents' Intelligence.
5 Extending MoLIC -- 5.1 Template Element -- 5.2 Allowing for the Interaction with a Third-Party System -- 5.3 Adaptations to MoLIC 2.0 Elements -- 6 Initial Evaluation of Proposal -- 7 Final Remarks and Future Works -- References -- Optimizing Conversational Commerce Involving Multilingual Consumers Through Large Language Models' Natural Language Understanding Abilities -- 1 Introduction -- 1.1 Objectives and Research Questions -- 2 Review of Related Literature -- 3 Method and Implementation -- 3.1 Technical Architecture -- 3.2 Knowledge Base -- 3.3 Synthetic Customer Data Preparation -- 3.4 Synthetic Seller Persona Creation -- 3.5 Synthetic Sales Conversation Creation -- 4 Results -- 4.1 General Applied CoT Approach -- 4.2 Presence of Necessary Conditions -- 4.3 Product Resolution -- 4.4 Database Insertions -- 4.5 Sample Case -- 4.6 Drawbacks and Limitations -- 5 Discussions -- 6 Conclusion and Future Work -- References -- A Map of Exploring Human Interaction Patterns with LLM: Insights into Collaboration and Creativity -- 1 Introduction -- 2 Related Work -- 2.1 The Undergoing Change in HAII Driven by Large Language Model -- 2.2 The Current Review of Human-AI Interaction -- 3 Method -- 3.1 Search and Selection -- 3.2 Mapping -- 4 Result -- 4.1 Processing Tool -- 4.2 Analysis Assistant -- 4.3 Creative Companion -- 4.4 Processing Agent -- 5 Discussion -- 5.1 Mapping Methodology Based on Human and Algorithmic Approaches -- 5.2 Differences Between Clusters -- 5.3 About the Vacancy in the Mapping -- 5.4 Future Directions -- 6 Limitation and Future Work -- 7 Conclusion -- References -- The Use of Large Language Model in Code Review Automation: An Examination of Enforcing SOLID Principles -- 1 Introduction -- 2 Background -- 2.1 Code Reviews -- 2.2 SOLID Principles -- 2.3 Large Language Model Technology -- 2.4 Mixtral LLM. 2.5 Role of Bots in Code Development and Review -- 2.6 Benefits for Large Global Development Teams -- 3 Related Works -- 3.1 A Systematic Evaluation of Large Language Models of Code -- 3.2 Effects of Adopting Code Review Bots on Pull Requests to OSS Projects -- 3.3 Reducing Human Effort and Improving Quality in Peer Code Reviews Using Automatic Static Analysis and Reviewer Recommendation -- 3.4 ChatGPT: A Study of Its Utility for Common Software Engineering Tasks -- 3.5 Insights and Implications for LLM-Based Code Review -- 4 Proposed Concept -- 4.1 Proposed Architecture and Integration -- 4.2 Usage of the Proposed Bot -- 5 Impact Analysis -- 5.1 Comparison with Existing Solutions -- 5.2 Potential Benefits -- 5.3 Challenges and Limitations -- 6 Conclusion -- References -- LLM Based Multi-agent Generation of Semi-structured Documents from Semantic Templates in the Public Administration Domain -- 1 Introduction -- 2 Related Work -- 2.1 LLMs in the PA Domain -- 3 Proposed Approach -- 3.1 Template Pre-processing -- 3.2 Multi-agent Interaction -- 3.3 Document Post-processing -- 4 Experimental Evaluation -- 4.1 Semantics Identification Agent -- 4.2 Information Retrieval Agent -- 4.3 Content Generation Agent -- 4.4 Prompt-Engineered Results -- 5 Conclusions -- References -- Enabling Human-Centered Machine Translation Using Concept-Based Large Language Model Prompting and Translation Memory -- 1 Introduction -- 1.1 Challenges in Traditional Machine Translation Within Human-Computer Interaction Contexts -- 1.2 Augmented Machine Translation via Large Language Model -- 2 Augmented Machine Translation via Concept-Driven Large Language Model Prompting -- 2.1 Motivation -- 2.2 Augmented Instruction for Discourse-Level Style -- 2.3 Augmented Instruction for Concept-Based Sentence-Level Post-editing -- 2.4 Performance Evaluation. 3 Assessing the Proficiency of Large Language Model in Applying Translation Concept -- 3.1 Motivation -- 3.2 The Capability of LLMs to Elucidate Translation Concepts -- 3.3 Assessing the LLM's Proficiency in Identifying When to Apply Translation Concepts -- 3.4 The Capability of LLM to Produce Target Translations that Reflect Relevant Concepts -- 4 Conclusions -- References -- Enhancing Large Language Models Through External Domain Knowledge -- 1 Introduction -- 2 Problem Identification and Objectives -- 3 Related Works -- 4 Design and Development of the Artifact -- 4.1 Expert Knowledge Acquisition -- 4.2 Metadata Provision -- 4.3 Prompt Generation -- 5 Demonstration -- 5.1 Implementation -- 5.2 Case Study -- 6 Discussion -- References -- ChatGPT and Language Translation -- 1 Introduction -- 1.1 Historical Background - PreGPT -- 1.2 Background - LLMs and ChatGPT -- 1.3 ChatGPT and Translation -- 2 Motivation and Methodology for This Study -- 2.1 Motivation -- 2.2 Methodology -- 2.3 Examples -- 3 Results -- 3.1 Classifying AI Generated Text -- 3.2 Human Ratings of Translation Quality -- 4 Conclusions -- References -- Large Language Models for Tracking Reliability of Information Sources -- 1 Introduction -- 2 Methods -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- The Heuristic Design Innovation Approach for Data-Integrated Large Language Model -- 1 Introduction -- 2 Related Works -- 2.1 Domain-Specific LLMs -- 2.2 Expert System -- 2.3 Human-AI Collaboration Design -- 3 Method -- 3.1 Overview of DIABot -- 3.2 Prompt -- 3.3 Database -- 3.4 Workflow -- 4 Value Assessment -- 4.1 Experimental Design -- 4.2 Participants -- 4.3 Experimental Process -- 4.4 Experimental Result -- 5 Discussion and Conclusion -- 6 Limitation and Future Work -- A Prompt of DIAbot -- B Tools OpenAPI -- References -- Advancing Human-Robot Interaction Through AI. FER-Pep: A Deep Learning Based Facial Emotion Recognition Framework for Humanoid Robot Pepper -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 Pepper -- 3.2 NAOqi Python API -- 3.3 EfficientNetV2 -- 4 Dataset Collection and Preprocessing -- 5 Experiments -- 5.1 Candidate Models for Facial Emotion Recognition -- 6 System Implementation -- 7 Result and Discussion -- 8 Conclusion -- References -- You Got the Feeling: Attributing Affective States to Dialogical Social Robots -- 1 Introduction -- 2 Empathy and Emotions Theories -- 3 The Experiment -- 3.1 Method and Interaction Steps in the Dialogues -- 4 Evaluation -- 5 Results and Future Works -- References -- Enhancing Usability of Voice Interfaces for Socially Assistive Robots Through Deep Learning: A German Case Study -- 1 Introduction -- 2 Related Work -- 2.1 Voice Interface Evaluations -- 2.2 Technical Construction of Voice Interfaces -- 3 Voice Interface -- 3.1 Design Goals -- 3.2 System Description -- 4 Evaluation -- 4.1 Methods and Material -- 4.2 Participants -- 4.3 Results -- 4.4 Discussion -- 5 Limitations -- 6 Conclusion -- References -- Enhancing User Experience: Designing Intuitive Interfaces for Sumo Robot Operations -- 1 Introduction -- 1.1 Intuitive Interface -- 1.2 Robotics -- 1.3 Sumo Robots -- 1.4 Designing Intuitive Interfaces for Sumo Robot Operations -- 2 Methodology -- 3 Result -- 3.1 Sumo Robot Performance -- 3.2 User Feedback -- 4 Discussion -- 4.1 Interpretation of Results -- 4.2 Comparison with Existing System -- 4.3 Implications and Future Works -- References -- Adaptive Robotics: Integrating Robotic Simulation, AI, Image Analysis, and Cloud-Based Digital Twin Simulation for Dynamic Task Completion -- 1 Introduction -- 1.1 Autonomous Robots -- 1.2 Robotics Simulation -- 1.3 AI in Robotics -- 1.4 Internet of Things -- 1.5 Isaac Simulation -- 1.6 Skydio and Sundt. 2 Theoretical Framework and Research Objectives. |
Record Nr. | UNISA-996601562303316 |
Degen Helmut | ||
Cham : , : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Artificial Intelligence in HCI : 5th International Conference, AI-HCI 2024, Held as Part of the 26th HCI International Conference, HCII 2024, Washington, DC, USA, June 29 – July 4, 2024, Proceedings, Part I / / edited by Helmut Degen, Stavroula Ntoa |
Autore | Degen Helmut |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (491 pages) |
Disciplina |
005.437
004.019 |
Altri autori (Persone) | NtoaStavroula |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
User interfaces (Computer systems)
Human-computer interaction Artificial intelligence Social sciences - Data processing Education - Data processing Computer networks Electronic commerce User Interfaces and Human Computer Interaction Artificial Intelligence Computer Application in Social and Behavioral Sciences Computers and Education Computer Communication Networks e-Commerce and e-Business |
ISBN |
9783031606069
9783031606052 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Human-centered artificial intelligence -- explainability and transparency -- AI systems and frameworks in HCI -- Ethical considerations and trust in AI -- enhancing user experience through AI-driven technologies -- AI in industry and operations -- Large language models for enhanced interaction -- advancing human-robot interaction through AI -- AI applications for social impact and human wellbeing. |
Record Nr. | UNINA-9910865289003321 |
Degen Helmut | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Artificial Intelligence in HCI : 5th International Conference, AI-HCI 2024, Held as Part of the 26th HCI International Conference, HCII 2024, Washington, DC, USA, June 29–July 4, 2024, Proceedings, Part II / / edited by Helmut Degen, Stavroula Ntoa |
Autore | Degen Helmut |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (480 pages) |
Disciplina |
5,437
4,019 |
Altri autori (Persone) | NtoaStavroula |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
User interfaces (Computer systems)
Human-computer interaction Artificial intelligence Social sciences - Data processing Education - Data processing Computer networks Electronic commerce User Interfaces and Human Computer Interaction Artificial Intelligence Computer Application in Social and Behavioral Sciences Computers and Education Computer Communication Networks e-Commerce and e-Business |
ISBN |
9783031606113
9783031606137 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Human-centered artificial intelligence -- explainability and transparency -- AI systems and frameworks in HCI -- Ethical considerations and trust in AI -- enhancing user experience through AI-driven technologies -- AI in industry and operations -- Large language models for enhanced interaction -- advancing human-robot interaction through AI -- AI applications for social impact and human wellbeing. |
Record Nr. | UNINA-9910865281303321 |
Degen Helmut | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Artificial Intelligence in HCI : 5th International Conference, AI-HCI 2024, Held as Part of the 26th HCI International Conference, HCII 2024, Washington, DC, USA, June 29–July 4, 2024, Proceedings, Part III / / edited by Helmut Degen, Stavroula Ntoa |
Autore | Degen Helmut |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (498 pages) |
Disciplina |
5,437
4,019 |
Altri autori (Persone) | NtoaStavroula |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
User interfaces (Computer systems)
Human-computer interaction Artificial intelligence Social sciences - Data processing Education - Data processing Computer networks Electronic commerce User Interfaces and Human Computer Interaction Artificial Intelligence Computer Application in Social and Behavioral Sciences Computers and Education Computer Communication Networks e-Commerce and e-Business |
ISBN | 3-031-60615-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Large language models for enhanced interaction -- advancing human-robot interaction through AI -- AI applications for social impact and human wellbeing. |
Record Nr. | UNINA-9910864182403321 |
Degen Helmut | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Artificial Intelligence in HCI [[electronic resource] ] : 4th International Conference, AI-HCI 2023, Held as Part of the 25th HCI International Conference, HCII 2023, Copenhagen, Denmark, July 23–28, 2023, Proceedings, Part I / / edited by Helmut Degen, Stavroula Ntoa |
Autore | Degen Helmut |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (683 pages) |
Disciplina | 004.019 |
Altri autori (Persone) | NtoaStavroula |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Artificial Intelligence |
ISBN | 3-031-35891-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Human-Centered Artificial Intelligence -- Explainability, Transparency, and Trustworthiness -- Ethics and Fairness in Artificial Intelligence -- AI-Supported User Experience Design -- Artificial Intelligence for Language, Text, and Speech-Related Tasks -- Human-AI Collaboration -- Artificial Intelligence for Decision-Support and Perception Analysis -- Innovations in AI-Enabled Systems. |
Record Nr. | UNISA-996542668203316 |
Degen Helmut | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Artificial Intelligence in HCI : 4th International Conference, AI-HCI 2023, Held as Part of the 25th HCI International Conference, HCII 2023, Copenhagen, Denmark, July 23–28, 2023, Proceedings, Part I / / edited by Helmut Degen, Stavroula Ntoa |
Autore | Degen Helmut |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (683 pages) |
Disciplina | 004.019 |
Altri autori (Persone) | NtoaStavroula |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Artificial Intelligence |
ISBN | 3-031-35891-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Human-Centered Artificial Intelligence -- Explainability, Transparency, and Trustworthiness -- Ethics and Fairness in Artificial Intelligence -- AI-Supported User Experience Design -- Artificial Intelligence for Language, Text, and Speech-Related Tasks -- Human-AI Collaboration -- Artificial Intelligence for Decision-Support and Perception Analysis -- Innovations in AI-Enabled Systems. |
Record Nr. | UNINA-9910734862703321 |
Degen Helmut | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Artificial Intelligence in HCI [[electronic resource] ] : 4th International Conference, AI-HCI 2023, Held as Part of the 25th HCI International Conference, HCII 2023, Copenhagen, Denmark, July 23–28, 2023, Proceedings, Part II / / edited by Helmut Degen, Stavroula Ntoa |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (642 pages) |
Disciplina | 060 |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Artificial Intelligence |
ISBN | 3-031-35894-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Human-Centered Artificial Intelligence -- Explainability, Transparency, and Trustworthiness -- Ethics and Fairness in Artificial Intelligence -- AI-Supported User Experience Design -- Artificial Intelligence for Language, Text, and Speech-Related Tasks -- Human-AI Collaboration -- Artificial Intelligence for Decision-Support and Perception Analysis -- Innovations in AI-Enabled Systems. |
Record Nr. | UNISA-996542670003316 |
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Artificial Intelligence in HCI : 4th International Conference, AI-HCI 2023, Held as Part of the 25th HCI International Conference, HCII 2023, Copenhagen, Denmark, July 23–28, 2023, Proceedings, Part II / / edited by Helmut Degen, Stavroula Ntoa |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (642 pages) |
Disciplina |
060
004.019 |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Artificial Intelligence |
ISBN | 3-031-35894-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Human-Centered Artificial Intelligence -- Explainability, Transparency, and Trustworthiness -- Ethics and Fairness in Artificial Intelligence -- AI-Supported User Experience Design -- Artificial Intelligence for Language, Text, and Speech-Related Tasks -- Human-AI Collaboration -- Artificial Intelligence for Decision-Support and Perception Analysis -- Innovations in AI-Enabled Systems. |
Record Nr. | UNINA-9910734855003321 |
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Artificial intelligence in HCI : 3rd international conference, AI-HCI 2022, held as part of the 24th HCI international conference, HCII 2022, virtual event, June 26 - July 1, 2022, proceedings / / edited by Helmut Degen and Stavroula Ntoa |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (623 pages) |
Disciplina | 004.019 |
Collana | Lecture Notes in Computer Science Ser. |
Soggetto topico |
Artificial intelligence
Human-computer interaction |
ISBN | 3-031-05643-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- HCI International 2022 Thematic Areas and Affiliated Conferences -- List of Conference Proceedings Volumes Appearing Before the Conference -- Preface -- 3rd International Conference on Artificial Intelligence in HCI (AI-HCI 2022) -- HCI International 2023 -- Contents -- Human-Centered AI -- Exploring the Design Context of AI-Powered Services: A Qualitative Investigation of Designers' Experiences with Machine Learning -- 1 Introduction -- 2 Literature Review -- 2.1 UX Design Practice and the Concept of a Design Material -- 2.2 Machine Learning as a Design Material -- 3 Method -- 3.1 Empirical Data Collection -- 3.2 Thematic Analysis -- 4 Findings -- 4.1 Absence of Competence -- 4.2 Lack of Incentive for Competence Development -- 4.3 Challenges Articulating Design Criteria -- 4.4 Mature Versus Immature Clients -- 4.5 Lack of Support for Ethical Concerns -- 4.6 Concluding Remarks -- 5 Discussion -- 6 Conclusion -- References -- Measuring and Predicting Human Trust in Recommendations from an AI Teammate -- 1 Trust in AI Teammates -- 2 Experimental Paradigm -- 3 Measures -- 4 Results -- 5 Discussion -- 6 Conclusion -- References -- Promoting Human Competences by Appropriate Modes of Interaction for Human-Centered-AI -- 1 Introduction -- 2 Methodological Approach -- 3 Interaction Modes -- 3.1 Offering Explanations and Possibilities for Exploration -- 3.2 Testing -- 3.3 Initiating and Performing Re-training -- 3.4 Variation of Underlying Data Sets and Methods -- 3.5 Flexible Sequencing or Filtering of Data Input -- 3.6 Identification and Comparison of Similar Cases -- 3.7 Refinement -- 3.8 Intervention -- 3.9 Vetoing -- 3.10 Critiquing -- 4 Conclusion and Outlook -- References -- Artificial Intelligence Augmenting Human Teams. A Systematic Literature Review on the Opportunities and Concerns -- 1 Introduction -- 2 Methods.
2.1 Planning the Literature Review -- 3 Findings -- 4 Discussion and Recommendation -- 5 Implications for Research and Practice -- 6 Conclusion and Limitations -- References -- Adoption and Perception of Artificial Intelligence Technologies by Children and Teens in Education -- 1 Introduction -- 2 Previous Work -- 3 Methodology -- 3.1 Keyword Search -- 3.2 Screening the Titles and Abstracts -- 3.3 Screening the Full Text -- 4 Results -- 5 Discussion -- 6 Conclusions -- References -- Analysis of the Impact of Applying UX Guidelines to Reduce Noise and Focus Attention -- 1 Introduction -- 2 Proposal and Methodology -- 3 Results and Evaluation -- 4 Conclusions -- References -- Gamifying the Human-in-the-Loop: Toward Increased Motivation for Training AI in Customer Service -- 1 Introduction -- 2 Related Work -- 3 Research Approach -- 4 Objectives of a Solution -- 5 Artifact Design and Development -- 6 Demonstration -- 7 Evaluation -- 8 Discussion and Conclusion -- References -- Explainable and Trustworthy AI -- Dominant View and Perception of Artificial Intelligence in Developing Economy -- 1 Introduction -- 2 Method -- 2.1 Participants -- 2.2 Instruments -- 3 Results -- 3.1 AI Powers African Economic Development -- 3.2 AI Systems Create More Jobs Than They Eliminate -- 3.3 Support for AI System Development -- 3.4 AI Induce Algorithmic Colonialism -- 3.5 Openness of AI Operation -- 3.6 African Readiness to Adopt AI -- 4 Discussion -- 5 Conclusion -- References -- MoReXAI - A Model to Reason About the eXplanation Design in AI Systems -- 1 Introduction -- 2 Foundations and Related Works -- 2.1 Ethical Principles and Explainable Artificial Intelligence (XAI) -- 2.2 Semiotic Engineering -- 2.3 Related Works -- 3 The Model for Reasoning About AI Explanation Design -- 3.1 Model Questions -- 3.2 MoReXAI Structure -- 3.3 MoReXai Use -- 4 Case Study. 4.1 Case Study Planning -- 4.2 Model Application -- 4.3 Results: Talking About Explanations -- 5 Discussion -- 5.1 About the Epistemic Character of the MoReXAI -- 5.2 Improvements to the MoReXAI -- 6 Conclusão -- References -- (De)Coding Social Practice in the Field of XAI: Towards a Co-constructive Framework of Explanations and Understanding Between Lay Users and Algorithmic Systems -- 1 Introduction -- 2 Method -- 3 Discussion/Empirical Insights -- 4 Conclusion -- References -- Explainable AI for Suicide Risk Assessment Using Eye Activities and Head Gestures -- 1 Introduction -- 2 Background -- 3 Methodology -- 3.1 Suicide Dataset Collection -- 3.2 Feature Extraction -- 3.3 Feature Selection -- 3.4 Statistical Analysis -- 3.5 Classification -- 4 Results and Discussion -- 4.1 Interpretation of Nonverbal Behavior -- 4.2 Classification Results -- 4.3 Limitations -- 5 Conclusion -- References -- ExMo: Explainable AI Model Using Inverse Frequency Decision Rules -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Review of the Bayesian Rule List (BRL) Algorithm -- 3.2 Decision Rules from TF-IDF -- 4 Experimental Results -- 4.1 Datasets -- 4.2 Classification Accuracy -- 4.3 Model Comparison -- 4.4 Textual Explanation -- 4.5 Comparison with Model-Agnostic Explanation -- 4.6 Execution Time -- 5 Conclusion -- References -- UX Design and Evaluation of AI-Enabled Systems -- A Model of Adaptive Gamification in Collaborative Location-Based Collecting Systems -- 1 Introduction -- 2 Related Work -- 3 Background -- 3.1 Space-Time Behaviour Definitions -- 3.2 Game Challenge Definitions -- 3.3 System Setup Definitions -- 4 CLCS Automatic Game Challenge Recommendation -- 4.1 Challenge Repository Population -- 4.2 Challenge Difficulty Estimation -- 4.3 Challenge Reward Computation -- 4.4 Challenge Sorting -- 5 Discussion -- 6 Conclusions and Future Work. References -- Benchmarking Neural Networks-Based Approaches for Predicting Visual Perception of User Interfaces -- 1 Introduction -- 2 Methods and Related Work -- 2.1 Neural Networks in Computer Vision -- 2.2 UI Feature Extraction -- 3 The Experimental Study Description -- 3.1 Hypotheses and Design -- 3.2 Material and the Input Data -- 3.3 Subjects and the Output Data -- 3.4 The Models: ANN and CNN -- 4 Results -- 4.1 Descriptive Statistics -- 4.2 The Models' Training Time -- 4.3 Benchmarking the Models' MSEs -- 4.4 Regression Analysis for MSE -- 5 Discussion and Conclusion -- References -- My Tutor is an AI: The Effects of Involvement and Tutor Type on Perceived Quality, Perceived Credibility, and Use Intention -- 1 Introduction -- 2 Related Work -- 2.1 AI Tutors -- 2.2 The Elaboration Likelihood Model (ELM) and Computers are Social Actors (CASA) -- 2.3 Attribution Theory -- 3 Method -- 3.1 Participants -- 3.2 Procedure -- 3.3 Stimuli -- 3.4 Measurement -- 4 Results -- 5 Discussion -- 5.1 Contributions and Implications -- 5.2 Limitations -- 6 Conclusion -- References -- Design of AI-Enabled Application to Detect Ayurvedic Nutritional Values of Edible Items and Suggest a Diet -- 1 Introduction -- 2 Literature Review and Related Works -- 2.1 Understanding Ayurveda -- 2.2 Understanding Ayurvedic Diet System -- 2.3 Understanding Quantified Self -- 2.4 Understanding Major Determinants of Food Choice -- 3 Research Approach -- 4 Interview Study -- 4.1 Study Setup and Method -- 4.2 Results of Initial Interview Study -- 5 Design and Implementation -- 5.1 Determination of Nutritional Values and Ayurvedic Gunas for Food Items -- 5.2 Diet Suggestions Based on Body Type -- 6 Usability Testing -- 6.1 Task 1: Determine Your Body Type in the Application Using Quiz -- 6.2 Task 2: Scan Any Food Item and Determine Its Ayurvedic Nutritional Information. 6.3 Task 3: Track Your Diet and Mood in the Application -- 6.4 Gamification -- 7 Conclusion -- References -- An AI-Based Decision Support System for Quality Control Applied to the Use Case Donor Cornea -- 1 Introduction -- 2 Related Work -- 3 Decision Support System -- 3.1 Data -- 3.2 Graphical Analytic Tools -- 3.3 Case-Based Reasoning as a Tool for Explainability -- 3.4 Machine Learning Classifiers -- 3.5 Aggregation -- 3.6 Graphical User Interface -- 4 Evaluation -- 4.1 Study Set-Up -- 4.2 Study Execution -- 4.3 Study Results -- 5 Summary and Future Work -- References -- Design and Implementation of Platform Protocol and Client of Hakka Residential System Based on Artificial Intelligence -- 1 Introduction -- 2 Method -- 2.1 Application Fields of Artificial Intelligence -- 2.2 Hakka Houses -- 2.3 Smart Home System -- 2.4 Function of Smart Home System -- 2.5 Calculation Methods Used in the Experiment -- 3 Experiment -- 3.1 Selection of Experimental Research Objects -- 3.2 Selection of Experimental Measurement Standards -- 4 Discussion -- 4.1 Investigation on Design Efficiency of the Two Companies -- 4.2 Client Utilization Survey Designed by Two Companies -- 5 Conclusions -- References -- Framework for User Experience Evaluation in MOOC Platforms -- 1 Introduction -- 2 Introduction -- 2.1 Massive and Open Online Courses -- 2.2 Classification of MOOC Criteria -- 2.3 User Experience -- 2.4 Categories and Factors that Make Up the UX -- 2.5 UX Dimensions -- 3 Proposal -- 3.1 FUXE-MOOC Design -- 3.2 FUXE-MOOC Components -- 4 Limitations and Future Research -- 5 Conclusions -- Appendix -- References -- Evaluation on Comfortable Arousal in Autonomous Driving Using Physiological Indexes -- 1 Introduction -- 2 Research Objective -- 3 Research Method -- 3.1 Physiological Indexes Based on Feature Importance -- 3.2 Data Set and Model Creation -- 4 Experiment. 4.1 Participants. |
Record Nr. | UNISA-996475771603316 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Artificial Intelligence in HCI : 3rd International Conference, AI-HCI 2022, Held as Part of the 24th HCI International Conference, HCII 2022, Virtual Event, June 26 – July 1, 2022, Proceedings / / edited by Helmut Degen, Stavroula Ntoa |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
Descrizione fisica | 1 online resource (623 pages) |
Disciplina | 004.019 |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
User interfaces (Computer systems) Human-computer interaction Social sciences - Data processing Education - Data processing Computer engineering Computer networks Electronic commerce Artificial Intelligence User Interfaces and Human Computer Interaction Computer Application in Social and Behavioral Sciences Computers and Education Computer Engineering and Networks e-Commerce and e-Business Interacció persona-ordinador Intel·ligència artificial |
Soggetto genere / forma |
Congressos
Llibres electrònics |
ISBN | 3-031-05643-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- HCI International 2022 Thematic Areas and Affiliated Conferences -- List of Conference Proceedings Volumes Appearing Before the Conference -- Preface -- 3rd International Conference on Artificial Intelligence in HCI (AI-HCI 2022) -- HCI International 2023 -- Contents -- Human-Centered AI -- Exploring the Design Context of AI-Powered Services: A Qualitative Investigation of Designers' Experiences with Machine Learning -- 1 Introduction -- 2 Literature Review -- 2.1 UX Design Practice and the Concept of a Design Material -- 2.2 Machine Learning as a Design Material -- 3 Method -- 3.1 Empirical Data Collection -- 3.2 Thematic Analysis -- 4 Findings -- 4.1 Absence of Competence -- 4.2 Lack of Incentive for Competence Development -- 4.3 Challenges Articulating Design Criteria -- 4.4 Mature Versus Immature Clients -- 4.5 Lack of Support for Ethical Concerns -- 4.6 Concluding Remarks -- 5 Discussion -- 6 Conclusion -- References -- Measuring and Predicting Human Trust in Recommendations from an AI Teammate -- 1 Trust in AI Teammates -- 2 Experimental Paradigm -- 3 Measures -- 4 Results -- 5 Discussion -- 6 Conclusion -- References -- Promoting Human Competences by Appropriate Modes of Interaction for Human-Centered-AI -- 1 Introduction -- 2 Methodological Approach -- 3 Interaction Modes -- 3.1 Offering Explanations and Possibilities for Exploration -- 3.2 Testing -- 3.3 Initiating and Performing Re-training -- 3.4 Variation of Underlying Data Sets and Methods -- 3.5 Flexible Sequencing or Filtering of Data Input -- 3.6 Identification and Comparison of Similar Cases -- 3.7 Refinement -- 3.8 Intervention -- 3.9 Vetoing -- 3.10 Critiquing -- 4 Conclusion and Outlook -- References -- Artificial Intelligence Augmenting Human Teams. A Systematic Literature Review on the Opportunities and Concerns -- 1 Introduction -- 2 Methods.
2.1 Planning the Literature Review -- 3 Findings -- 4 Discussion and Recommendation -- 5 Implications for Research and Practice -- 6 Conclusion and Limitations -- References -- Adoption and Perception of Artificial Intelligence Technologies by Children and Teens in Education -- 1 Introduction -- 2 Previous Work -- 3 Methodology -- 3.1 Keyword Search -- 3.2 Screening the Titles and Abstracts -- 3.3 Screening the Full Text -- 4 Results -- 5 Discussion -- 6 Conclusions -- References -- Analysis of the Impact of Applying UX Guidelines to Reduce Noise and Focus Attention -- 1 Introduction -- 2 Proposal and Methodology -- 3 Results and Evaluation -- 4 Conclusions -- References -- Gamifying the Human-in-the-Loop: Toward Increased Motivation for Training AI in Customer Service -- 1 Introduction -- 2 Related Work -- 3 Research Approach -- 4 Objectives of a Solution -- 5 Artifact Design and Development -- 6 Demonstration -- 7 Evaluation -- 8 Discussion and Conclusion -- References -- Explainable and Trustworthy AI -- Dominant View and Perception of Artificial Intelligence in Developing Economy -- 1 Introduction -- 2 Method -- 2.1 Participants -- 2.2 Instruments -- 3 Results -- 3.1 AI Powers African Economic Development -- 3.2 AI Systems Create More Jobs Than They Eliminate -- 3.3 Support for AI System Development -- 3.4 AI Induce Algorithmic Colonialism -- 3.5 Openness of AI Operation -- 3.6 African Readiness to Adopt AI -- 4 Discussion -- 5 Conclusion -- References -- MoReXAI - A Model to Reason About the eXplanation Design in AI Systems -- 1 Introduction -- 2 Foundations and Related Works -- 2.1 Ethical Principles and Explainable Artificial Intelligence (XAI) -- 2.2 Semiotic Engineering -- 2.3 Related Works -- 3 The Model for Reasoning About AI Explanation Design -- 3.1 Model Questions -- 3.2 MoReXAI Structure -- 3.3 MoReXai Use -- 4 Case Study. 4.1 Case Study Planning -- 4.2 Model Application -- 4.3 Results: Talking About Explanations -- 5 Discussion -- 5.1 About the Epistemic Character of the MoReXAI -- 5.2 Improvements to the MoReXAI -- 6 Conclusão -- References -- (De)Coding Social Practice in the Field of XAI: Towards a Co-constructive Framework of Explanations and Understanding Between Lay Users and Algorithmic Systems -- 1 Introduction -- 2 Method -- 3 Discussion/Empirical Insights -- 4 Conclusion -- References -- Explainable AI for Suicide Risk Assessment Using Eye Activities and Head Gestures -- 1 Introduction -- 2 Background -- 3 Methodology -- 3.1 Suicide Dataset Collection -- 3.2 Feature Extraction -- 3.3 Feature Selection -- 3.4 Statistical Analysis -- 3.5 Classification -- 4 Results and Discussion -- 4.1 Interpretation of Nonverbal Behavior -- 4.2 Classification Results -- 4.3 Limitations -- 5 Conclusion -- References -- ExMo: Explainable AI Model Using Inverse Frequency Decision Rules -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Review of the Bayesian Rule List (BRL) Algorithm -- 3.2 Decision Rules from TF-IDF -- 4 Experimental Results -- 4.1 Datasets -- 4.2 Classification Accuracy -- 4.3 Model Comparison -- 4.4 Textual Explanation -- 4.5 Comparison with Model-Agnostic Explanation -- 4.6 Execution Time -- 5 Conclusion -- References -- UX Design and Evaluation of AI-Enabled Systems -- A Model of Adaptive Gamification in Collaborative Location-Based Collecting Systems -- 1 Introduction -- 2 Related Work -- 3 Background -- 3.1 Space-Time Behaviour Definitions -- 3.2 Game Challenge Definitions -- 3.3 System Setup Definitions -- 4 CLCS Automatic Game Challenge Recommendation -- 4.1 Challenge Repository Population -- 4.2 Challenge Difficulty Estimation -- 4.3 Challenge Reward Computation -- 4.4 Challenge Sorting -- 5 Discussion -- 6 Conclusions and Future Work. References -- Benchmarking Neural Networks-Based Approaches for Predicting Visual Perception of User Interfaces -- 1 Introduction -- 2 Methods and Related Work -- 2.1 Neural Networks in Computer Vision -- 2.2 UI Feature Extraction -- 3 The Experimental Study Description -- 3.1 Hypotheses and Design -- 3.2 Material and the Input Data -- 3.3 Subjects and the Output Data -- 3.4 The Models: ANN and CNN -- 4 Results -- 4.1 Descriptive Statistics -- 4.2 The Models' Training Time -- 4.3 Benchmarking the Models' MSEs -- 4.4 Regression Analysis for MSE -- 5 Discussion and Conclusion -- References -- My Tutor is an AI: The Effects of Involvement and Tutor Type on Perceived Quality, Perceived Credibility, and Use Intention -- 1 Introduction -- 2 Related Work -- 2.1 AI Tutors -- 2.2 The Elaboration Likelihood Model (ELM) and Computers are Social Actors (CASA) -- 2.3 Attribution Theory -- 3 Method -- 3.1 Participants -- 3.2 Procedure -- 3.3 Stimuli -- 3.4 Measurement -- 4 Results -- 5 Discussion -- 5.1 Contributions and Implications -- 5.2 Limitations -- 6 Conclusion -- References -- Design of AI-Enabled Application to Detect Ayurvedic Nutritional Values of Edible Items and Suggest a Diet -- 1 Introduction -- 2 Literature Review and Related Works -- 2.1 Understanding Ayurveda -- 2.2 Understanding Ayurvedic Diet System -- 2.3 Understanding Quantified Self -- 2.4 Understanding Major Determinants of Food Choice -- 3 Research Approach -- 4 Interview Study -- 4.1 Study Setup and Method -- 4.2 Results of Initial Interview Study -- 5 Design and Implementation -- 5.1 Determination of Nutritional Values and Ayurvedic Gunas for Food Items -- 5.2 Diet Suggestions Based on Body Type -- 6 Usability Testing -- 6.1 Task 1: Determine Your Body Type in the Application Using Quiz -- 6.2 Task 2: Scan Any Food Item and Determine Its Ayurvedic Nutritional Information. 6.3 Task 3: Track Your Diet and Mood in the Application -- 6.4 Gamification -- 7 Conclusion -- References -- An AI-Based Decision Support System for Quality Control Applied to the Use Case Donor Cornea -- 1 Introduction -- 2 Related Work -- 3 Decision Support System -- 3.1 Data -- 3.2 Graphical Analytic Tools -- 3.3 Case-Based Reasoning as a Tool for Explainability -- 3.4 Machine Learning Classifiers -- 3.5 Aggregation -- 3.6 Graphical User Interface -- 4 Evaluation -- 4.1 Study Set-Up -- 4.2 Study Execution -- 4.3 Study Results -- 5 Summary and Future Work -- References -- Design and Implementation of Platform Protocol and Client of Hakka Residential System Based on Artificial Intelligence -- 1 Introduction -- 2 Method -- 2.1 Application Fields of Artificial Intelligence -- 2.2 Hakka Houses -- 2.3 Smart Home System -- 2.4 Function of Smart Home System -- 2.5 Calculation Methods Used in the Experiment -- 3 Experiment -- 3.1 Selection of Experimental Research Objects -- 3.2 Selection of Experimental Measurement Standards -- 4 Discussion -- 4.1 Investigation on Design Efficiency of the Two Companies -- 4.2 Client Utilization Survey Designed by Two Companies -- 5 Conclusions -- References -- Framework for User Experience Evaluation in MOOC Platforms -- 1 Introduction -- 2 Introduction -- 2.1 Massive and Open Online Courses -- 2.2 Classification of MOOC Criteria -- 2.3 User Experience -- 2.4 Categories and Factors that Make Up the UX -- 2.5 UX Dimensions -- 3 Proposal -- 3.1 FUXE-MOOC Design -- 3.2 FUXE-MOOC Components -- 4 Limitations and Future Research -- 5 Conclusions -- Appendix -- References -- Evaluation on Comfortable Arousal in Autonomous Driving Using Physiological Indexes -- 1 Introduction -- 2 Research Objective -- 3 Research Method -- 3.1 Physiological Indexes Based on Feature Importance -- 3.2 Data Set and Model Creation -- 4 Experiment. 4.1 Participants. |
Record Nr. | UNINA-9910568292503321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|