Deep Neural Evolution [[electronic resource] ] : Deep Learning with Evolutionary Computation / / edited by Hitoshi Iba, Nasimul Noman |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (437 pages) |
Disciplina | 006.32 |
Collana | Natural Computing Series |
Soggetto topico |
Machine learning
Neural networks (Computer science) Machine Learning Mathematical Models of Cognitive Processes and Neural Networks |
ISBN | 981-15-3685-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1: Evolutionary Computation and meta-heuristics -- Chapter 2: A Shallow Introduction to Deep Neural Networks -- Chapter 3: On the Assessment of Nature-Inspired Meta-Heuristic Optimization Techniques to Fine-Tune Deep Belief Networks -- Chapter 4: Automated development of DNN based spoken language systems using evolutionary algorithms -- Chapter 5: Search heuristics for the optimization of DBN for Time Series Forecasting -- Chapter 6: Particle Swarm Optimisation for Evolving Deep Convolutional Neural Networks for Image Classification: Single- and Multi-objective Approaches -- Chapter 7: Designing Convolutional Neural Network Architectures Using Cartesian Genetic Programming -- Chapter 8: Fast Evolution of CNN Architecture for Image Classificaiton -- Chapter 9: Discovering Gated Recurrent Neural Network Architectures -- Chapter 10: Investigating Deep Recurrent Connections and Recurrent Memory Cells Using Neuro-Evolution -- Chapter 11: Neuroevolution of Generative Adversarial Networks -- Chapter 12: Evolving deep neural networks for X-ray based detection of dangerous objects -- Chapter 13: Evolving the architecture and hyperparameters of DNNs for malware detection -- Chapter 14: Data Dieting in GAN Training -- Chapter 15: One-Pixel Attack: Understanding and Improving Deep Neural Networks with Evolutionary Computation. |
Record Nr. | UNISA-996465469103316 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Deep Neural Evolution : Deep Learning with Evolutionary Computation / / edited by Hitoshi Iba, Nasimul Noman |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (437 pages) |
Disciplina | 006.32 |
Collana | Natural Computing Series |
Soggetto topico |
Machine learning
Neural networks (Computer science) Machine Learning Mathematical Models of Cognitive Processes and Neural Networks |
ISBN | 981-15-3685-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1: Evolutionary Computation and meta-heuristics -- Chapter 2: A Shallow Introduction to Deep Neural Networks -- Chapter 3: On the Assessment of Nature-Inspired Meta-Heuristic Optimization Techniques to Fine-Tune Deep Belief Networks -- Chapter 4: Automated development of DNN based spoken language systems using evolutionary algorithms -- Chapter 5: Search heuristics for the optimization of DBN for Time Series Forecasting -- Chapter 6: Particle Swarm Optimisation for Evolving Deep Convolutional Neural Networks for Image Classification: Single- and Multi-objective Approaches -- Chapter 7: Designing Convolutional Neural Network Architectures Using Cartesian Genetic Programming -- Chapter 8: Fast Evolution of CNN Architecture for Image Classificaiton -- Chapter 9: Discovering Gated Recurrent Neural Network Architectures -- Chapter 10: Investigating Deep Recurrent Connections and Recurrent Memory Cells Using Neuro-Evolution -- Chapter 11: Neuroevolution of Generative Adversarial Networks -- Chapter 12: Evolving deep neural networks for X-ray based detection of dangerous objects -- Chapter 13: Evolving the architecture and hyperparameters of DNNs for malware detection -- Chapter 14: Data Dieting in GAN Training -- Chapter 15: One-Pixel Attack: Understanding and Improving Deep Neural Networks with Evolutionary Computation. |
Record Nr. | UNINA-9910734093703321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Evolutionary computation in gene regulatory network research / / edited by Hitoshi Iba, Nasimul Noman ; contributors, Tatsuya Akutsu [and thirty others] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2016 |
Descrizione fisica | 1 online resource (462 pages) |
Disciplina | 572.8650113 |
Collana |
Wiley Series in Bioinformatics: Computational Techniques and Engineering
THEi Wiley ebooks. |
Soggetto topico |
Genetic regulation - Mathematical models
Gene regulatory networks - Computer simulation Genetic algorithms Evolutionary computation |
ISBN |
1-119-07978-0
1-119-07977-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910137485303321 |
Hoboken, New Jersey : , : Wiley, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Evolutionary computation in gene regulatory network research / / edited by Hitoshi Iba, Nasimul Noman ; contributors, Tatsuya Akutsu [and thirty others] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2016 |
Descrizione fisica | 1 online resource (462 pages) |
Disciplina | 572.8650113 |
Collana |
Wiley Series in Bioinformatics: Computational Techniques and Engineering
THEi Wiley ebooks. |
Soggetto topico |
Genetic regulation - Mathematical models
Gene regulatory networks - Computer simulation Genetic algorithms Evolutionary computation |
ISBN |
1-119-07978-0
1-119-07977-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910818177103321 |
Hoboken, New Jersey : , : Wiley, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|