top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Algorithmic Mechanism Design for Internet of Things Services Market : Design Incentive Mechanisms to Facilitate the Efficiency and Sustainability of IoT Ecosystem
Algorithmic Mechanism Design for Internet of Things Services Market : Design Incentive Mechanisms to Facilitate the Efficiency and Sustainability of IoT Ecosystem
Autore Jiao Yutao
Pubbl/distr/stampa Singapore : , : Springer Singapore Pte. Limited, , 2022
Descrizione fisica 1 online resource (120 pages)
Altri autori (Persone) WangPing
NiyatoDusit
Soggetto genere / forma Electronic books.
ISBN 9789811673535
9789811673528
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910510558203321
Jiao Yutao  
Singapore : , : Springer Singapore Pte. Limited, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algorithmic mechanism design for internet of things services market : design incentive mechanisms to facilitate the efficiency and sustainability of IoT ecosystem. / / Yutao Jiao, Ping Wang and Dusit Niyato
Algorithmic mechanism design for internet of things services market : design incentive mechanisms to facilitate the efficiency and sustainability of IoT ecosystem. / / Yutao Jiao, Ping Wang and Dusit Niyato
Autore Jiao Yutao
Pubbl/distr/stampa Singapore : , : Springer Nature, , [2022]
Descrizione fisica 1 online resource (120 pages)
Disciplina 004.678
Soggetto topico Internet of things
Internet industry
Resource allocation
ISBN 981-16-7353-5
981-16-7352-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910743380403321
Jiao Yutao  
Singapore : , : Springer Nature, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deep reinforcement learning for wireless communications and networking : theory, applications and implementation / / Dinh Thai Hoang [and four others]
Deep reinforcement learning for wireless communications and networking : theory, applications and implementation / / Dinh Thai Hoang [and four others]
Autore Hoang Dinh Thai <1986->
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (291 pages)
Disciplina 006.31
Soggetto topico Reinforcement learning
Wireless communication systems
Soggetto non controllato Artificial Intelligence
Computer Networks
Computers
ISBN 1-119-87374-6
1-119-87368-1
1-119-87373-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Notes on Contributors -- Foreword -- Preface -- Acknowledgments -- Acronyms -- Introduction -- Part I Fundamentals of Deep Reinforcement Learning -- Chapter 1 Deep Reinforcement Learning and Its Applications -- 1.1 Wireless Networks and Emerging Challenges -- 1.2 Machine Learning Techniques and Development of DRL -- 1.2.1 Machine Learning -- 1.2.2 Artificial Neural Network -- 1.2.3 Convolutional Neural Network -- 1.2.4 Recurrent Neural Network -- 1.2.5 Development of Deep Reinforcement Learning -- 1.3 Potentials and Applications of DRL -- 1.3.1 Benefits of DRL in Human Lives -- 1.3.2 Features and Advantages of DRL Techniques -- 1.3.3 Academic Research Activities -- 1.3.4 Applications of DRL Techniques -- 1.3.5 Applications of DRL Techniques in Wireless Networks -- 1.4 Structure of this Book and Target Readership -- 1.4.1 Motivations and Structure of this Book -- 1.4.2 Target Readership -- 1.5 Chapter Summary -- References -- Chapter 2 Markov Decision Process and Reinforcement Learning -- 2.1 Markov Decision Process -- 2.2 Partially Observable Markov Decision Process -- 2.3 Policy and Value Functions -- 2.4 Bellman Equations -- 2.5 Solutions of MDP Problems -- 2.5.1 Dynamic Programming -- 2.5.1.1 Policy Evaluation -- 2.5.1.2 Policy Improvement -- 2.5.1.3 Policy Iteration -- 2.5.2 Monte Carlo Sampling -- 2.6 Reinforcement Learning -- 2.7 Chapter Summary -- References -- Chapter 3 Deep Reinforcement Learning Models and Techniques -- 3.1 Value‐Based DRL Methods -- 3.1.1 Deep Q‐Network -- 3.1.2 Double DQN -- 3.1.3 Prioritized Experience Replay -- 3.1.4 Dueling Network -- 3.2 Policy‐Gradient Methods -- 3.2.1 REINFORCE Algorithm -- 3.2.1.1 Policy Gradient Estimation -- 3.2.1.2 Reducing the Variance -- 3.2.1.3 Policy Gradient Theorem -- 3.2.2 Actor‐Critic Methods -- 3.2.3 Advantage of Actor‐Critic Methods.
3.2.3.1 Advantage of Actor‐Critic (A2C) -- 3.2.3.2 Asynchronous Advantage Actor‐Critic (A3C) -- 3.2.3.3 Generalized Advantage Estimate (GAE) -- 3.3 Deterministic Policy Gradient (DPG) -- 3.3.1 Deterministic Policy Gradient Theorem -- 3.3.2 Deep Deterministic Policy Gradient (DDPG) -- 3.3.3 Distributed Distributional DDPG (D4PG) -- 3.4 Natural Gradients -- 3.4.1 Principle of Natural Gradients -- 3.4.2 Trust Region Policy Optimization (TRPO) -- 3.4.2.1 Trust Region -- 3.4.2.2 Sample‐Based Formulation -- 3.4.2.3 Practical Implementation -- 3.4.3 Proximal Policy Optimization (PPO) -- 3.5 Model‐Based RL -- 3.5.1 Vanilla Model‐Based RL -- 3.5.2 Robust Model‐Based RL: Model‐Ensemble TRPO (ME‐TRPO) -- 3.5.3 Adaptive Model‐Based RL: Model‐Based Meta‐Policy Optimization (MB‐MPO) -- 3.6 Chapter Summary -- References -- Chapter 4 A Case Study and Detailed Implementation -- 4.1 System Model and Problem Formulation -- 4.1.1 System Model and Assumptions -- 4.1.1.1 Jamming Model -- 4.1.1.2 System Operation -- 4.1.2 Problem Formulation -- 4.1.2.1 State Space -- 4.1.2.2 Action Space -- 4.1.2.3 Immediate Reward -- 4.1.2.4 Optimization Formulation -- 4.2 Implementation and Environment Settings -- 4.2.1 Install TensorFlow with Anaconda -- 4.2.2 Q‐Learning -- 4.2.2.1 Codes for the Environment -- 4.2.2.2 Codes for the Agent -- 4.2.3 Deep Q‐Learning -- 4.3 Simulation Results and Performance Analysis -- 4.4 Chapter Summary -- References -- Part II Applications of DRL in Wireless Communications and Networking -- Chapter 5 DRL at the Physical Layer -- 5.1 Beamforming, Signal Detection, and Decoding -- 5.1.1 Beamforming -- 5.1.1.1 Beamforming Optimization Problem -- 5.1.1.2 DRL‐Based Beamforming -- 5.1.2 Signal Detection and Channel Estimation -- 5.1.2.1 Signal Detection and Channel Estimation Problem -- 5.1.2.2 RL‐Based Approaches -- 5.1.3 Channel Decoding.
5.2 Power and Rate Control -- 5.2.1 Power and Rate Control Problem -- 5.2.2 DRL‐Based Power and Rate Control -- 5.3 Physical‐Layer Security -- 5.4 Chapter Summary -- References -- Chapter 6 DRL at the MAC Layer -- 6.1 Resource Management and Optimization -- 6.2 Channel Access Control -- 6.2.1 DRL in the IEEE 802.11 MAC -- 6.2.2 MAC for Massive Access in IoT -- 6.2.3 MAC for 5G and B5G Cellular Systems -- 6.3 Heterogeneous MAC Protocols -- 6.4 Chapter Summary -- References -- Chapter 7 DRL at the Network Layer -- 7.1 Traffic Routing -- 7.2 Network Slicing -- 7.2.1 Network Slicing‐Based Architecture -- 7.2.2 Applications of DRL in Network Slicing -- 7.3 Network Intrusion Detection -- 7.3.1 Host‐Based IDS -- 7.3.2 Network‐Based IDS -- 7.4 Chapter Summary -- References -- Chapter 8 DRL at the Application and Service Layer -- 8.1 Content Caching -- 8.1.1 QoS‐Aware Caching -- 8.1.2 Joint Caching and Transmission Control -- 8.1.3 Joint Caching, Networking, and Computation -- 8.2 Data and Computation Offloading -- 8.3 Data Processing and Analytics -- 8.3.1 Data Organization -- 8.3.1.1 Data Partitioning -- 8.3.1.2 Data Compression -- 8.3.2 Data Scheduling -- 8.3.3 Tuning of Data Processing Systems -- 8.3.4 Data Indexing -- 8.3.4.1 Database Index Selection -- 8.3.4.2 Index Structure Construction -- 8.3.5 Query Optimization -- 8.4 Chapter Summary -- References -- Part III Challenges, Approaches, Open Issues, and Emerging Research Topics -- Chapter 9 DRL Challenges in Wireless Networks -- 9.1 Adversarial Attacks on DRL -- 9.1.1 Attacks Perturbing the State space -- 9.1.1.1 Manipulation of Observations -- 9.1.1.2 Manipulation of Training Data -- 9.1.2 Attacks Perturbing the Reward Function -- 9.1.3 Attacks Perturbing the Action Space -- 9.2 Multiagent DRL in Dynamic Environments -- 9.2.1 Motivations -- 9.2.2 Multiagent Reinforcement Learning Models.
9.2.2.1 Markov/Stochastic Games -- 9.2.2.2 Decentralized Partially Observable Markov Decision Process (DPOMDP) -- 9.2.3 Applications of Multiagent DRL in Wireless Networks -- 9.2.4 Challenges of Using Multiagent DRL in Wireless Networks -- 9.2.4.1 Nonstationarity Issue -- 9.2.4.2 Partial Observability Issue -- 9.3 Other Challenges -- 9.3.1 Inherent Problems of Using RL in Real‐Word Systems -- 9.3.1.1 Limited Learning Samples -- 9.3.1.2 System Delays -- 9.3.1.3 High‐Dimensional State and Action Spaces -- 9.3.1.4 System and Environment Constraints -- 9.3.1.5 Partial Observability and Nonstationarity -- 9.3.1.6 Multiobjective Reward Functions -- 9.3.2 Inherent Problems of DL and Beyond -- 9.3.2.1 Inherent Problems of DL -- 9.3.2.2 Challenges of DRL Beyond Deep Learning -- 9.3.3 Implementation of DL Models in Wireless Devices -- 9.4 Chapter Summary -- References -- Chapter 10 DRL and Emerging Topics in Wireless Networks -- 10.1 DRL for Emerging Problems in Future Wireless Networks -- 10.1.1 Joint Radar and Data Communications -- 10.1.2 Ambient Backscatter Communications -- 10.1.3 Reconfigurable Intelligent Surface‐Aided Communications -- 10.1.4 Rate Splitting Communications -- 10.2 Advanced DRL Models -- 10.2.1 Deep Reinforcement Transfer Learning -- 10.2.1.1 Reward Shaping -- 10.2.1.2 Intertask Mapping -- 10.2.1.3 Learning from Demonstrations -- 10.2.1.4 Policy Transfer -- 10.2.1.5 Reusing Representations -- 10.2.2 Generative Adversarial Network (GAN) for DRL -- 10.2.3 Meta Reinforcement Learning -- 10.3 Chapter Summary -- References -- Index -- EULA.
Record Nr. UNINA-9910830760503321
Hoang Dinh Thai <1986->  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Edge AI [[electronic resource] ] : Convergence of Edge Computing and Artificial Intelligence / / by Xiaofei Wang, Yiwen Han, Victor C. M. Leung, Dusit Niyato, Xueqiang Yan, Xu Chen
Edge AI [[electronic resource] ] : Convergence of Edge Computing and Artificial Intelligence / / by Xiaofei Wang, Yiwen Han, Victor C. M. Leung, Dusit Niyato, Xueqiang Yan, Xu Chen
Autore Wang Xiaofei
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (xvii, 149 pages)
Disciplina 006.3
Soggetto topico Artificial intelligence
Computer communication systems
Computer organization
Artificial Intelligence
Computer Communication Networks
Computer Systems Organization and Communication Networks
ISBN 981-15-6186-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I. Introduction and Fundamentals -- Chapter 1. Introduction -- Chapter 2. Fundamentals of Edge Computing -- Chapter 3. Fundamentals of Artificial Intelligence -- Part II. Artificial Intelligence and Edge Computing -- Chapter 4. Artificial Intelligence Applications on Edge -- Chapter 5. Artificial Intelligence Inference in Edge -- Chapter 6. Artificial Intelligence Training at Edge -- Chapter 7. Edge Computing for Artificial Intelligence -- Chapter 8. Artificial Intelligence for Optimizing Edge -- Part III. Challenges and Conclusions -- Chapter 9. Lessons Learned and Open Challenges -- Chapter 10. Conclusions.
Record Nr. UNINA-9910416083603321
Wang Xiaofei  
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Edge AI : Convergence of Edge Computing and Artificial Intelligence / / by Xiaofei Wang, Yiwen Han, Victor C. M. Leung, Dusit Niyato, Xueqiang Yan, Xu Chen
Edge AI : Convergence of Edge Computing and Artificial Intelligence / / by Xiaofei Wang, Yiwen Han, Victor C. M. Leung, Dusit Niyato, Xueqiang Yan, Xu Chen
Autore Wang Xiaofei
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Springer Singapore, 2020
Descrizione fisica 1 online resource (xvii, 149 pages)
Disciplina 006.3
Soggetto topico Artificial intelligence
Computer communication systems
Computer organization
Artificial Intelligence
Computer Communication Networks
Computer Systems Organization and Communication Networks
ISBN 981-15-6186-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I. Introduction and Fundamentals -- Chapter 1. Introduction -- Chapter 2. Fundamentals of Edge Computing -- Chapter 3. Fundamentals of Artificial Intelligence -- Part II. Artificial Intelligence and Edge Computing -- Chapter 4. Artificial Intelligence Applications on Edge -- Chapter 5. Artificial Intelligence Inference in Edge -- Chapter 6. Artificial Intelligence Training at Edge -- Chapter 7. Edge Computing for Artificial Intelligence -- Chapter 8. Artificial Intelligence for Optimizing Edge -- Part III. Challenges and Conclusions -- Chapter 9. Lessons Learned and Open Challenges -- Chapter 10. Conclusions.
Record Nr. UNISA-996465363903316
Wang Xiaofei  
Springer Singapore, 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Edge AI : Convergence of Edge Computing and Artificial Intelligence / / by Xiaofei Wang, Yiwen Han, Victor C. M. Leung, Dusit Niyato, Xueqiang Yan, Xu Chen
Edge AI : Convergence of Edge Computing and Artificial Intelligence / / by Xiaofei Wang, Yiwen Han, Victor C. M. Leung, Dusit Niyato, Xueqiang Yan, Xu Chen
Autore Wang Xiaofei
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Springer Singapore, 2020
Descrizione fisica 1 online resource (xvii, 149 pages)
Disciplina 006.3
Soggetto topico Artificial intelligence
Computer communication systems
Computer organization
Artificial Intelligence
Computer Communication Networks
Computer Systems Organization and Communication Networks
ISBN 981-15-6186-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I. Introduction and Fundamentals -- Chapter 1. Introduction -- Chapter 2. Fundamentals of Edge Computing -- Chapter 3. Fundamentals of Artificial Intelligence -- Part II. Artificial Intelligence and Edge Computing -- Chapter 4. Artificial Intelligence Applications on Edge -- Chapter 5. Artificial Intelligence Inference in Edge -- Chapter 6. Artificial Intelligence Training at Edge -- Chapter 7. Edge Computing for Artificial Intelligence -- Chapter 8. Artificial Intelligence for Optimizing Edge -- Part III. Challenges and Conclusions -- Chapter 9. Lessons Learned and Open Challenges -- Chapter 10. Conclusions.
Record Nr. UNINA-9910863118103321
Wang Xiaofei  
Springer Singapore, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Radio resource management in multi-tier cellular wireless networks / / Ekram Hossain, University of Manitoba, Canada, Long Bao Le, INRS-EMT, Quebec, Canada, Dusit Niyato, Nanyang Technological University, Singapore
Radio resource management in multi-tier cellular wireless networks / / Ekram Hossain, University of Manitoba, Canada, Long Bao Le, INRS-EMT, Quebec, Canada, Dusit Niyato, Nanyang Technological University, Singapore
Autore Hossain Ekram <1971->
Edizione [1st edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2014]
Descrizione fisica 1 online resource (347 p.)
Disciplina 621.3845/6
Altri autori (Persone) NiyatoDusit
LeBao Long <1976->
Collana Adaptive and cognitive dynamic systems: signal processing, learning, communications and control
Soggetto topico Wireless communication systems
Femtocells
Radio resource management (Wireless communications)
ISBN 1-118-74977-4
1-118-74982-0
1-118-74946-4
Classificazione TEC041000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- PREFACE xv -- CHAPTER 1 OVERVIEW OF MULTI-TIER CELLULAR WIRELESS NETWORKS 1 -- CHAPTER 2 RESOURCE ALLOCATION APPROACHES IN MULTI-TIER NETWORKS 31 -- CHAPTER 3 RESOURCE ALLOCATION IN OFDMA-BASED MULTI-TIER CELLULAR NETWORKS 51 -- CHAPTER 4 RESOURCE ALLOCATION FOR CLUSTERED SMALL CELLS IN TWO-TIER OFDMA NETWORKS 84 -- CHAPTER 5 RESOURCE ALLOCATION IN TWO-TIER NETWORKS USING FRACTIONAL FREQUENCY REUSE 102 -- CHAPTER 6 CALL ADMISSION CONTROL IN FRACTIONAL FREQUENCY REUSE-BASED TWO-TIER NETWORKS 123 -- CHAPTER 7 GAME THEORETIC APPROACHES FOR RESOURCE MANAGEMENT IN MULTI-TIER NETWORKS 155 -- CHAPTER 8 RESOURCE ALLOCATION IN CDMA-BASED MULTI-TIER HETNETS 206 -- CHAPTER 9 SELF-ORGANIZING SMALL CELL NETWORKS 250 -- CHAPTER 10 RESOURCE ALLOCATION IN MULTI-TIER NETWORKS WITH COGNITIVE SMALL CELLS 302 -- INDEX 321
Record Nr. UNINA-9910139011803321
Hossain Ekram <1971->  
Hoboken, New Jersey : , : Wiley, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Radio resource management in multi-tier cellular wireless networks / / Ekram Hossain, University of Manitoba, Canada, Long Bao Le, INRS-EMT, Quebec, Canada, Dusit Niyato, Nanyang Technological University, Singapore
Radio resource management in multi-tier cellular wireless networks / / Ekram Hossain, University of Manitoba, Canada, Long Bao Le, INRS-EMT, Quebec, Canada, Dusit Niyato, Nanyang Technological University, Singapore
Autore Hossain Ekram <1971->
Edizione [1st edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2014]
Descrizione fisica 1 online resource (347 p.)
Disciplina 621.3845/6
Altri autori (Persone) NiyatoDusit
LeBao Long <1976->
Collana Adaptive and cognitive dynamic systems: signal processing, learning, communications and control
Soggetto topico Wireless communication systems
Femtocells
Radio resource management (Wireless communications)
ISBN 1-118-74977-4
1-118-74982-0
1-118-74946-4
Classificazione TEC041000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- PREFACE xv -- CHAPTER 1 OVERVIEW OF MULTI-TIER CELLULAR WIRELESS NETWORKS 1 -- CHAPTER 2 RESOURCE ALLOCATION APPROACHES IN MULTI-TIER NETWORKS 31 -- CHAPTER 3 RESOURCE ALLOCATION IN OFDMA-BASED MULTI-TIER CELLULAR NETWORKS 51 -- CHAPTER 4 RESOURCE ALLOCATION FOR CLUSTERED SMALL CELLS IN TWO-TIER OFDMA NETWORKS 84 -- CHAPTER 5 RESOURCE ALLOCATION IN TWO-TIER NETWORKS USING FRACTIONAL FREQUENCY REUSE 102 -- CHAPTER 6 CALL ADMISSION CONTROL IN FRACTIONAL FREQUENCY REUSE-BASED TWO-TIER NETWORKS 123 -- CHAPTER 7 GAME THEORETIC APPROACHES FOR RESOURCE MANAGEMENT IN MULTI-TIER NETWORKS 155 -- CHAPTER 8 RESOURCE ALLOCATION IN CDMA-BASED MULTI-TIER HETNETS 206 -- CHAPTER 9 SELF-ORGANIZING SMALL CELL NETWORKS 250 -- CHAPTER 10 RESOURCE ALLOCATION IN MULTI-TIER NETWORKS WITH COGNITIVE SMALL CELLS 302 -- INDEX 321
Record Nr. UNINA-9910810197303321
Hossain Ekram <1971->  
Hoboken, New Jersey : , : Wiley, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wireless Semantic Communications : Concepts, Principles, and Challenges
Wireless Semantic Communications : Concepts, Principles, and Challenges
Autore Sun Yao
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (225 pages)
Altri autori (Persone) ZhangLan
NiyatoDusit
ImranMuhammad Ali
ISBN 1-394-22331-5
1-394-22332-3
1-394-22333-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910889693703321
Sun Yao  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui