top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Hypoelliptic estimates and spectral theory for fokker-planck operators and witten laplacians / / Bernard Helffer, Francis Nier
Hypoelliptic estimates and spectral theory for fokker-planck operators and witten laplacians / / Bernard Helffer, Francis Nier
Autore Helffer Bernard
Edizione [1st ed. 2005.]
Pubbl/distr/stampa Berlin, Germany ; ; New York, United States : , : Springer, , [2005]
Descrizione fisica 1 online resource (X, 209 p.)
Disciplina 510
Collana Lecture notes in mathematics
Soggetto topico Spectral theory (Mathematics)
Hypoelliptic operators
ISBN 3-540-31553-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Kohn's Proof of the Hypoellipticity of the Hörmander Operators -- Compactness Criteria for the Resolvent of Schrödinger Operators -- Global Pseudo-differential Calculus -- Analysis of some Fokker-Planck Operator -- Return to Equillibrium for the Fokker-Planck Operator -- Hypoellipticity and Nilpotent Groups -- Maximal Hypoellipticity for Polynomial of Vector Fields and Spectral Byproducts -- On Fokker-Planck Operators and Nilpotent Techniques -- Maximal Microhypoellipticity for Systems and Applications to Witten Laplacians -- Spectral Properties of the Witten-Laplacians in Connection with Poincaré Inequalities for Laplace Integrals -- Semi-classical Analysis for the Schrödinger Operator: Harmonic Approximation -- Decay of Eigenfunctions and Application to the Splitting -- Semi-classical Analysis and Witten Laplacians: Morse Inequalities -- Semi-classical Analysis and Witten Laplacians: Tunneling Effects -- Accurate Asymptotics for the Exponentially Small Eigenvalues of the Witten Laplacian -- Application to the Fokker-Planck Equation -- Epilogue -- Index.
Record Nr. UNINA-9910483993903321
Helffer Bernard  
Berlin, Germany ; ; New York, United States : , : Springer, , [2005]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hypoelliptic estimates and spectral theory for fokker-planck operators and witten laplacians / / Bernard Helffer, Francis Nier
Hypoelliptic estimates and spectral theory for fokker-planck operators and witten laplacians / / Bernard Helffer, Francis Nier
Autore Helffer Bernard
Edizione [1st ed. 2005.]
Pubbl/distr/stampa Berlin, Germany ; ; New York, United States : , : Springer, , [2005]
Descrizione fisica 1 online resource (X, 209 p.)
Disciplina 510
Collana Lecture notes in mathematics
Soggetto topico Spectral theory (Mathematics)
Hypoelliptic operators
ISBN 3-540-31553-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Kohn's Proof of the Hypoellipticity of the Hörmander Operators -- Compactness Criteria for the Resolvent of Schrödinger Operators -- Global Pseudo-differential Calculus -- Analysis of some Fokker-Planck Operator -- Return to Equillibrium for the Fokker-Planck Operator -- Hypoellipticity and Nilpotent Groups -- Maximal Hypoellipticity for Polynomial of Vector Fields and Spectral Byproducts -- On Fokker-Planck Operators and Nilpotent Techniques -- Maximal Microhypoellipticity for Systems and Applications to Witten Laplacians -- Spectral Properties of the Witten-Laplacians in Connection with Poincaré Inequalities for Laplace Integrals -- Semi-classical Analysis for the Schrödinger Operator: Harmonic Approximation -- Decay of Eigenfunctions and Application to the Splitting -- Semi-classical Analysis and Witten Laplacians: Morse Inequalities -- Semi-classical Analysis and Witten Laplacians: Tunneling Effects -- Accurate Asymptotics for the Exponentially Small Eigenvalues of the Witten Laplacian -- Application to the Fokker-Planck Equation -- Epilogue -- Index.
Record Nr. UNISA-996466484303316
Helffer Bernard  
Berlin, Germany ; ; New York, United States : , : Springer, , [2005]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui