Non-volatile in-memory computing by spintronics / / Hao Yu, Leibin Ni, Yuhao Wang
| Non-volatile in-memory computing by spintronics / / Hao Yu, Leibin Ni, Yuhao Wang |
| Autore | Yu Hao |
| Pubbl/distr/stampa | [San Rafael, California] : , : Morgan & Claypool Publishers, , 2017 |
| Descrizione fisica | 1 online resource (163 pages) : color illustrations |
| Disciplina | 621.381 |
| Collana | Synthesis Lectures on Emerging Engineering Technologies |
| Soggetto topico |
Spintronics
Nonvolatile random-access memory |
| ISBN | 1-62705-644-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
1. Introduction -- 1.1 Memory wall -- 1.2 Traditional semiconductor memory -- 1.2.1 Overview -- 1.2.2 Nano-scale limitations -- 1.3 Non-volatile spintronic memory -- 1.3.1 Basic magnetization process -- 1.3.2 Magnetization damping -- 1.3.3 Spin-transfer torque -- 1.3.4 Magnetization dynamics -- 1.3.5 Domain wall propagation -- 1.4 Traditional memory architecture -- 1.5 Non-volatile in-memory computing architecture -- 1.6 References --
2. Non-volatile spintronic device and circuit -- 2.1 SPICE formulation with new nano-scale NVM devices -- 2.1.1 Traditional modified nodal analysis -- 2.1.2 New MNA with non-volatile state variables -- 2.2 STT-MTJ device and model -- 2.2.1 STT-MTJ -- 2.2.2 STT-RAM -- 2.2.3 Topological insulator -- 2.3 Domain wall device and model -- 2.3.1 Magnetization reversal -- 2.3.2 MTJ resistance -- 2.3.3 Domain wall propagation -- 2.3.4 Circular domain wall nanowire -- 2.4 Spintronic storage -- 2.4.1 Spintronic memory -- 2.4.2 Spintronic readout -- 2.5 Spintronic logic -- 2.5.1 XOR -- 2.5.2 Adder -- 2.5.3 Multiplier -- 2.5.4 LUT -- 2.6 Spintronic interconnect -- 2.6.1 Coding-based interconnect -- 2.6.2 Domain wall-based encoder/decoder -- 2.6.3 Performance evaluation -- 2.7 References -- 3. In-memory data encryption -- 3.1 In-memory advanced encryption standard -- 3.1.1 Fundamental of AES -- 3.1.2 Domain wall nanowire-based AES computing -- 3.1.3 Pipelined AES by domain wall nanowire -- 3.1.4 Performance evaluation -- 3.2 Domain wall-based SIMON block cipher -- 3.2.1 Fundamental of SIMON block cipher -- 3.2.2 Hardware stages -- 3.2.3 Round counter -- 3.2.4 Control signals -- 3.2.5 Key expansion -- 3.2.6 Encryption -- 3.2.7 Performance evaluation -- 3.3 References -- 4. In-memory data analytics -- 4.1 In-memory machine learning -- 4.1.1 Extreme learning machine -- 4.1.2 MapReduce-based matrix multiplication -- 4.1.3 Domain wall-based hardware mapping -- 4.1.4 Performance evaluation -- 4.2 In-memory face recognition -- 4.2.1 Energy-efficient STT-MRAM with Spare-represented data -- 4.2.2 QoS-aware adaptive current scaling -- 4.2.3 STT-RAM based hardware mapping -- 4.2.4 Performance evaluation -- 4.3 References -- Authors' biographies. |
| Record Nr. | UNINA-9910155575903321 |
Yu Hao
|
||
| [San Rafael, California] : , : Morgan & Claypool Publishers, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Non-Volatile In-Memory Computing by Spintronics [[electronic resource] /] / by Hao Yu, Leibin Ni, Yuhao Wang
| Non-Volatile In-Memory Computing by Spintronics [[electronic resource] /] / by Hao Yu, Leibin Ni, Yuhao Wang |
| Autore | Yu Hao |
| Edizione | [1st ed. 2017.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
| Descrizione fisica | 1 online resource (XIII, 147 p.) |
| Disciplina | 620 |
| Collana | Synthesis Lectures on Emerging Engineering Technologies |
| Soggetto topico |
Engineering
Electrical engineering Electronic circuits Computers Materials science Surfaces (Technology) Thin films Technology and Engineering Electrical and Electronic Engineering Electronic Circuits and Systems Computer Hardware Materials Science Surfaces, Interfaces and Thin Film |
| ISBN | 3-031-02032-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Acknowledgments -- Introduction -- Non-volatile Spintronic Device and Circuit -- In-memory Data Encryption -- In-memory Data Analytics -- Authors' Biographies . |
| Record Nr. | UNINA-9910795628303321 |
Yu Hao
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Non-Volatile In-Memory Computing by Spintronics / / by Hao Yu, Leibin Ni, Yuhao Wang
| Non-Volatile In-Memory Computing by Spintronics / / by Hao Yu, Leibin Ni, Yuhao Wang |
| Autore | Yu Hao |
| Edizione | [1st ed. 2017.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
| Descrizione fisica | 1 online resource (XIII, 147 p.) |
| Disciplina | 620 |
| Collana | Synthesis Lectures on Emerging Engineering Technologies |
| Soggetto topico |
Engineering
Electrical engineering Electronic circuits Computers Materials science Surfaces (Technology) Thin films Technology and Engineering Electrical and Electronic Engineering Electronic Circuits and Systems Computer Hardware Materials Science Surfaces, Interfaces and Thin Film |
| ISBN |
9783031020322
3031020324 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Acknowledgments -- Introduction -- Non-volatile Spintronic Device and Circuit -- In-memory Data Encryption -- In-memory Data Analytics -- Authors' Biographies . |
| Record Nr. | UNINA-9910960158903321 |
Yu Hao
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
ReRAM-Based Machine Learning
| ReRAM-Based Machine Learning |
| Autore | Yu Hao |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Stevenage : , : Institution of Engineering & Technology, , 2021 |
| Descrizione fisica | 1 online resource (261 pages) |
| Disciplina | 006.31 |
| Altri autori (Persone) |
NiLeibin
DinakarraoSai Manoj Pudukotai |
| Collana | Computing and Networks |
| Soggetto topico | Machine learning |
| ISBN |
1-83724-558-4
1-5231-3657-X 1-83953-082-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Contents -- Acronyms -- Preface -- About the authors -- Part I. Introduction -- 1 Introduction -- 1.1 Introduction -- 1.1.1 Memory wall and powerwall -- 1.1.2 Semiconductor memory -- 1.1.2.1 Memory technologies -- 1.1.2.2 Nanoscale limitations -- 1.1.3 Nonvolatile IMC architecture -- 1.2 Challenges and contributions -- 1.3 Book organization -- 2 The need of in-memory computing -- 2.1 Introduction -- 2.2 Neuromorphic computing devices -- 2.2.1 Resistive random-access memory -- 2.2.2 Spin-transfer-torque magnetic random-access memory -- 2.2.3 Phase change memory -- 2.3 Characteristics of NVM devices for neuromorphic computing -- 2.4 IMC architectures for machine learning -- 2.4.1 Operating principles of IMC architectures -- 2.4.1.1 In-macro operating schemes -- 2.4.1.2 Architectures for operating schemes -- 2.4.2 Analog and digitized fashion of IMC -- 2.4.3 Analog IMC -- 2.4.3.1 Analog MAC -- 2.4.3.2 Cascading IMC macros -- 2.4.3.3 Bitcell and array design of analog IMC -- 2.4.3.4 Peripheral circuitry of analog IMC -- 2.4.3.5 Challenges of analog IMC -- 2.4.3.6 Trade-offs of analog IMC devices -- 2.4.4 Digitized IMC -- 2.4.5 Literature review of IMC -- 2.4.5.1 DRAM-based IMCs -- 2.4.5.2 NAND-Flash-based IMCs -- 2.4.5.3 SRAM-based IMCs -- 2.4.5.4 ReRAM-based IMCs -- 2.4.5.5 STT-MRAM-based IMCs -- 2.4.5.6 SOT-MRAM-based IMCs -- 2.5 Analysis of IMC architectures -- 3 The background of ReRAM devices -- 3.1 ReRAM device and SPICE model -- 3.1.1 Drift-type ReRAM device -- 3.1.2 Diffusive-type ReRAM device -- 3.2 ReRAM-crossbar structure -- 3.2.1 Analog and digitized ReRAM crossbar -- 3.2.1.1 Traditional analog ReRAM crossbar -- 3.2.1.2 Digitalized ReRAM crossbar -- 3.2.2 Connection of ReRAM crossbar -- 3.2.2.1 Direct-connected ReRAM -- 3.2.2.2 One-transistor-one-ReRAM -- 3.2.2.3 One-selector-one-ReRAM -- 3.3 ReRAM-based oscillator.
3.4 Write-in scheme for multibit ReRAM storage -- 3.4.1 ReRAM data storage -- 3.4.2 Multi-threshold resistance for data storage -- 3.4.3 Write and read -- 3.4.3.1 Write-in method -- 3.4.3.2 Readout method -- 3.4.4 Validation -- 3.4.5 Encoding and 3-bit storage -- 3.4.5.1 Exploration of the memristance range -- 3.4.5.2 Uniform input encoding -- 3.4.5.3 Nonuniform encoding -- 3.5 Logic functional units with ReRAM -- 3.5.1 OR gate -- 3.5.2 AND gate -- 3.6 ReRAM for logic operations -- 3.6.1 Simulation settings -- 3.6.2 ReRAM-based circuits -- 3.6.2.1 Logic operations -- 3.6.2.2 Readout circuit -- 3.6.3 ReRAM as a computational unit-cum-memory -- Part II. Machine learning accelerators -- 4 The background of machine learning algorithms -- 4.1 SVM-based machine learning -- 4.2 Single-layer feedforward neural network-based machine learning -- 4.2.1 Single-layer feedforward network -- 4.2.1.1 Feature extraction -- 4.2.1.2 Neural network-based learning -- 4.2.1.3 Incremental LS solver-based learning -- 4.2.2 L2-norm-gradient-based learning -- 4.2.2.1 Multilayer neural network -- 4.2.2.2 Direct-gradient-based L2-norm optimization -- 4.3 DCNN-based machine learning -- 4.3.1 Deep learning for multilayer neural network -- 4.3.2 Convolutional neural network -- 4.3.3 Binary convolutional neural network -- 4.3.3.1 Bitwise convolution -- 4.3.3.2 Bitwise batch normalization -- 4.3.3.3 Bitwise pooling and activation functions -- 4.3.3.4 Bitwise CNN model overview -- 4.4 TNN-based machine learning -- 4.4.1 Tensor-train decomposition and compression -- 4.4.2 Tensor-train-based neural network -- 4.4.3 Training TNN -- 5 XIMA: the in-ReRAM machine learning architecture -- 5.1 ReRAM network-based ML operations -- 5.1.1 ReRAM-crossbar network -- 5.1.1.1 Mapping of ReRAM crossbar for matrix-vector multiplication -- 5.1.1.2 Performance evaluation. 5.1.2 Coupled ReRAM oscillator network -- 5.1.2.1 Coupled-ReRAM-oscillator network for L2-norm calculation -- 5.1.2.2 Performance evaluation -- 5.2 ReRAM network-based in-memory ML accelerator -- 5.2.1 Distributed ReRAM-crossbar in-memory architecture -- 5.2.1.1 Memory-computing integration -- 5.2.1.2 Communication protocol and control bus -- 5.2.2 3D XIMA -- 5.2.2.1 3D single-layer CMOS-ReRAM architecture -- 5.2.2.2 3D multilayer CMOS-ReRAM architecture -- 6 The mapping of machine learning algorithms on XIMA -- 6.1 Machine learning algorithms on XIMA -- 6.1.1 SLFN-based learning and inference acceleration -- 6.1.1.1 Step 1. Parallel digitizing -- 6.1.1.2 Step 2. XOR -- 6.1.1.3 Step 3. Encoding -- 6.1.1.4 Step 4. Adding and shifting for inner-product result -- 6.1.2 BCNN-based inference acceleration on passive array -- 6.1.2.1 Mapping bitwise convolution -- 6.1.2.2 Mapping bitwise batch normalization -- 6.1.2.3 Mapping bitwise pooling and binarization -- 6.1.2.4 Summary of mapping bitwise CNN -- 6.1.3 BCNN-based inference acceleration on 1S1R array -- 6.1.3.1 Mapping unsigned bitwise convolution -- 6.1.3.2 Mapping batch normalization, pooling and binarization -- 6.1.4 L2-norm gradient-based learning and inference acceleration -- 6.1.4.1 Mapping matrix-vector multiplication on ReRAM-crossbar network -- 6.1.4.2 Mapping L2-norm calculation on coupled ReRAM oscillator network -- 6.1.4.3 Mapping flow of multilayer neural network on ReRAM network -- 6.1.5 Experimental evaluation of machine learning algorithms on XIMA architecture -- 6.1.5.1 SLFN-based learning and inference acceleration -- 6.1.5.2 L2-norm gradient-based learning and inference acceleration -- 6.1.5.3 BCNN-based inference acceleration on passive array -- 6.1.5.4 BCNN-based inference acceleration on 1S1R array -- 6.2 Machine learning algorithms on 3D XIMA -- 6.2.1 On-chip design for SLFN. 6.2.1.1 Data quantization -- 6.2.1.2 ReRAM layer implementation for digitized matrix-vector multiplication -- 6.2.1.3 CMOS layer implementation for decoding and incremental least-squares -- 6.2.2 On-chip design for TNNs -- 6.2.2.1 Mapping on multilayer architecture -- 6.2.2.2 Mapping TNN on single-layer architecture -- 6.2.3 Experimental evaluation of machine learning algorithms on 3D CMOS-ReRAM -- 6.2.3.1 On-chip design for SLFN-based face recognition -- 6.2.3.2 Results of TNN-based on-chip design with 3D multilayer architecture -- 6.2.3.3 TNN-based distributed on-chip design on 3D single-layer architecture -- Part III. Case studies -- 7 Large-scale case study: accelerator for ResNet -- 7.1 Introduction -- 7.2 Deep neural network with quantization -- 7.2.1 Basics of ResNet -- 7.2.2 Quantized convolution and residual block -- 7.2.3 Quantized BN -- 7.2.4 Quantized activation function and pooling -- 7.2.5 Quantized deep neural network overview -- 7.2.6 Training strategy -- 7.3 Device for in-memory computing -- 7.3.1 ReRAM crossbar -- 7.3.2 Customized DAC and ADC circuits -- 7.3.3 In-memory computing architecture -- 7.4 Quantized ResNet on ReRAM crossbar -- 7.4.1 Mapping strategy -- 7.4.2 Overall architecture -- 7.5 Experiment result -- 7.5.1 Experiment settings -- 7.5.2 Device simulations -- 7.5.3 Accuracy analysis -- 7.5.3.1 Peak accuracy comparison -- 7.5.3.2 Accuracy under device variation -- 7.5.3.3 Accuracy under approximation -- 7.5.4 Performance analysis -- 7.5.4.1 Energy and area -- 7.5.4.2 Throughput and efficiency -- 8 Large-scale case study: accelerator for compressive sensing -- 8.1 Introduction -- 8.2 Background -- 8.2.1 Compressive sensing and isometric distortion -- 8.2.2 Optimized near-isometric embedding -- 8.3 Boolean embedding for signal acquisition front end -- 8.3.1 CMOS-based Boolean embedding circuit. 8.3.2 ReRAM crossbar-based Boolean embedding circuit -- 8.3.3 Problem formulation -- 8.4 IH algorithm -- 8.4.1 Orthogonal rotation -- 8.4.2 Quantization -- 8.4.3 Overall optimization algorithm -- 8.5 Row generation algorithm -- 8.5.1 Elimination of norm equality constraint -- 8.5.2 Convex relaxation of orthogonal constraint -- 8.5.3 Overall optimization algorithm -- 8.6 Numerical results -- 8.6.1 Experiment setup -- 8.6.2 IH algorithm on high-D ECG signals -- 8.6.2.1 Algorithm convergence and effectiveness -- 8.6.2.2 ECG recovery quality comparison -- 8.6.3 Row generation algorithm on low-D image patches -- 8.6.3.1 Algorithm effectiveness -- 8.6.3.2 Image recovery quality comparison -- 8.6.4 Hardware performance evaluation -- 8.6.4.1 Hardware comparison -- 8.6.4.2 Impact of ReRAM variation -- 9 Conclusions: wrap-up, open questions and challenges -- 9.1 Conclusion -- 9.2 Future work -- References -- Index -- Back Cover. |
| Record Nr. | UNINA-9911007148703321 |
Yu Hao
|
||
| Stevenage : , : Institution of Engineering & Technology, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||