top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Financial data resampling for machine learning based trading : application to cryptocurrency markets / / Tomé Almeida Borges, Rui Neves
Financial data resampling for machine learning based trading : application to cryptocurrency markets / / Tomé Almeida Borges, Rui Neves
Autore Borges Tomé Almeida
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (108 pages)
Disciplina 332.6322
Soggetto topico Investments - Statistical methods
Criptomoneda
Inversions
Estadística matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-68379-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466558303316
Borges Tomé Almeida  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Financial data resampling for machine learning based trading : application to cryptocurrency markets / / Tomé Almeida Borges, Rui Neves
Financial data resampling for machine learning based trading : application to cryptocurrency markets / / Tomé Almeida Borges, Rui Neves
Autore Borges Tomé Almeida
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (108 pages)
Disciplina 332.6322
Soggetto topico Investments - Statistical methods
Criptomoneda
Inversions
Estadística matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-68379-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910484264103321
Borges Tomé Almeida  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Parallel Genetic Algorithms for Financial Pattern Discovery Using GPUs / / by João Baúto, Rui Neves, Nuno Horta
Parallel Genetic Algorithms for Financial Pattern Discovery Using GPUs / / by João Baúto, Rui Neves, Nuno Horta
Autore Baúto João
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (91 pages) : illustrations (some color), graphs
Disciplina 519.7
Collana SpringerBriefs in Computational Intelligence
Soggetto topico Computational intelligence
Financial engineering
Economics, Mathematical 
Computational Intelligence
Financial Engineering
Quantitative Finance
ISBN 3-319-73329-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- State-of-the-Art in Pattern Recognition Techniques -- SAX/GA CPU Approach -- GPU-accelerated SAX/GA -- Conclusions and Future Work in the Field.
Record Nr. UNINA-9910299933503321
Baúto João  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stock exchange trading using grid pattern optimized by a genetic algorithm with speciation : the case of S&P 500 / / Tiago Martins, Rui Neves
Stock exchange trading using grid pattern optimized by a genetic algorithm with speciation : the case of S&P 500 / / Tiago Martins, Rui Neves
Autore Martins Tiago
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (79 pages)
Disciplina 006.3
Collana SpringerBriefs in Applied Sciences and Technology
Soggetto topico Computational intelligence
Financial engineering
ISBN 3-030-76680-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Acronyms -- List of Figures -- List of Tables -- 1 Introduction -- 1.1 Background -- 1.2 Proposed Solution -- 1.3 Main Contribution -- 1.4 Outline -- References -- 2 Related Work -- 2.1 Financial Portfolio and Portfolio Optimization -- 2.2 Stock Market Analysis -- 2.2.1 Technical Indicators -- 2.3 Optimization Techniques -- 2.3.1 Genetic Algorithms -- 2.3.2 Artificial Neural Networks -- 2.3.3 NeuroEvolution -- 2.3.4 NeuroEvolution of Augmenting Topologies -- 2.3.5 Speciation -- 2.4 Pattern Detection -- 2.4.1 Chart Patterns -- 2.4.2 Detection of Perceptually Important Points -- 2.4.3 Application of Templates -- 2.4.4 Application of Rules -- 2.5 Chapter Conclusion -- References -- 3 Architecture -- 3.1 System's Architecture -- 3.2 User Interface -- 3.3 Financial Data -- 3.4 Data Flow and Data Processing -- 3.5 Trading Algorithm -- 3.5.1 Pattern Detection -- 3.5.2 API for Genetic Algorithm -- 3.5.3 Genetic Algorithm and Speciation -- 3.5.4 System Optimizations -- 3.6 Chapter Conclusion -- References -- 4 Evaluation -- 4.1 Tests Scenarios and Objectives -- 4.2 General Setup -- 4.3 Test Scenario 1-FSGW Versus TSAG -- 4.3.1 Parameter Specification -- 4.3.2 Performance Measures -- 4.3.3 Discussion of Results and Illustrative Examples -- 4.4 Test Scenario 2-FSGW with Market Exiting Parameters Depending ... -- 4.4.1 Parameter Specification -- 4.4.2 Performance Measures -- 4.4.3 Discussion of Results and Illustrative Examples -- 4.5 Test Scenario 3-FSGW Using Speciation in GA Versus ... -- 4.5.1 Parameter Specification -- 4.5.2 Performance Measures -- 4.5.3 Discussion of Results and Illustrative Examples -- 4.6 Overall Analysis -- 4.7 Chapter Conclusion -- Reference -- 5 Conclusions and Future Work -- 5.1 Summary and Achievements -- 5.2 Future Work.
Record Nr. UNINA-9910491030403321
Martins Tiago  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui