top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied nonlinear dynamics [[electronic resource] ] : analytical, computational, and experimental methods / / Ali H. Nayfeh, Balakumar Balachandran
Applied nonlinear dynamics [[electronic resource] ] : analytical, computational, and experimental methods / / Ali H. Nayfeh, Balakumar Balachandran
Autore Nayfeh Ali Hasan <1933->
Pubbl/distr/stampa New York, : Wiley, c1995
Descrizione fisica 1 online resource (703 p.)
Disciplina 515.35
621.38131
Altri autori (Persone) BalachandranBalakumar
Collana Wiley series in nonlinear science
Soggetto topico Dynamics
Nonlinear theories
ISBN 1-282-01051-4
9786612010514
3-527-61754-X
3-527-61755-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto APPLIED NONLINEAR DYNAMICS; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 DISCRETE-TIME SYSTEMS; 1.2 CONTINUOUS-TIME SYSTEMS; 1.2.1 Nonautonomous Systems; 1.2.2 Autonomous Systems; 1.2.3 Phase Portraits and Flows; 1.3 ATTRACTING SETS; 1.4 CONCEPTS OF STABILITY; 1.4.1 Lyapunov Stability; 1.4.2 Asymptotic Stability; 1.4.3 Poincaré Stability; 1.4.4 Lagrange Stability (Bounded Stability); 1.4.5 Stability Through Lyapunov Function; 1.5 ATTRACTORS; 1.6 COMMENTS; 1.7 EXERCISES; 2 EQUILIBRIUM SOLUTIONS; 2.1 CONTINUOUS-TIME SYSTEMS; 2.1.1 Linearization Near an Equilibrium Solution
2.1.2 Classification and Stability of Equilibrium Solutions2.1.3 Eigenspaces and Invariant Manifolds; 2.1.4 Analytical Construction of Stable and Unstable Manifolds; 2.2 FIXED POINTS OF MAPS; 2.3 BIFURCATIONS OF CONTINUOUS SYSTEMS; 2.3.1 Local Bifurcations of Fixed Points; 2.3.2 Normal Forms for Bifurcations; 2.3.3 Bifurcation Diagrams and Sets; 2.3.4 Center Manifold Reduction; 2.3.5 The Lyapunov-Schmidt Method; 2.3.6 The Method of Multiple Scales; 2.3.7 Structural Stability; 2.3.8 Stability of Bifurcations to Perturbations; 2.3.9 Codimension of a Bifurcation; 2.3.10 Global Bifurcations
2.4 BIFURCATIONS OF MAPS2.5 EXERCISES; 3 PERIODIC SOLUTIONS; 3.1 PERIODIC SOLUTIONS; 3.1.1 Autonomous Systems; 3.1.2 Nonautonomous Systems; 3.1.3 Comments; 3.2 FLOQUET THEORY; 3.2.1 Autonomous Systems; 3.2.2 Nonautonomous Systems; 3.2.3 Comments on the Monodromy Matrix; 3.2.4 Manifolds of a Periodic Solution; 3.3 POINCARÉ MAPS; 3.3.1 Nonautonomous Systems; 3.3.2 Autonomous Systems; 3.4 BIFURCATIONS; 3.4.1 Symmetry-Breaking Bifurcation; 3.4.2 Cyclic-Fold Bifurcation; 3.4.3 Period-Doubling or Flip Bifurcation; 3.4.4 Transcritical Bifurcation; 3.4.5 Secondary Hopf or Neimark Bifurcation
3.5 ANALYTICAL CONSTRUCTIONS3.5.1 Method of Multiple Scales; 3.5.2 Center Manifold Reduction; 3.5.3 General Case; 3.6 EXERCISES; 4 QUASIPERIODIC SOLUTIONS; 4.1 POINCARÉ MAPS; 4.1.1 Winding Time and Rotation Number; 4.1.2 Second-Order Poincaré Map; 4.1.3 Comments; 4.2 CIRCLE MAP; 4.3 CONSTRUCTIONS; 4.3.1 Method of Multiple Scales; 4.3.2 Spectral Balance Method; 4.3.3 Poincaré Map Method; 4.4 STABILITY; 4.5 SYNCHRONIZATION; 4.6 EXERCISES; 5 CHAOS; 5.1 MAPS; 5.2 CONTINUOUS-TIME SYSTEMS; 5.3 PERIOD-DOUBLING SCENARIO; 5.4 INTERMITTENCY MECHANISMS; 5.4.1 Type I Intermittency
5.4.2 Type III Intermittency5.4.3 Type II Intermittency; 5.5 QUASIPERIODIC ROUTES; 5.5.1 Ruelle-Takens Scenario; 5.5.2 Torus Breakdown; 5.5.3 Torus Doubling; 5.6 CRISES; 5.7 MELNIKOV THEORY; 5.7.1 Homoclinic Tangles; 5.7.2 Heteroclinic Tangles; 5.7.3 Numerical Prediction of Manifold Intersections; 5.7.4 Analytical Prediction of Manifold Intersections; 5.7.5 Application of Melnikov's Method; 5.7.6 Comments; 5.8 BIFURCATIONS OF HOMOCLINIC ORBITS; 5.8.1 Planar Systems; 5.8.2 Orbits Homoclinic to a Saddle; 5.8.3 Orbits Homoclinic to a Saddle Focus; 5.8.4 Comments; 5.9 EXERCISES
6 NUMERICAL METHODS
Record Nr. UNINA-9910144739203321
Nayfeh Ali Hasan <1933->  
New York, : Wiley, c1995
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied nonlinear dynamics [[electronic resource] ] : analytical, computational, and experimental methods / / Ali H. Nayfeh, Balakumar Balachandran
Applied nonlinear dynamics [[electronic resource] ] : analytical, computational, and experimental methods / / Ali H. Nayfeh, Balakumar Balachandran
Autore Nayfeh Ali Hasan <1933->
Pubbl/distr/stampa New York, : Wiley, c1995
Descrizione fisica 1 online resource (703 p.)
Disciplina 515.35
621.38131
Altri autori (Persone) BalachandranBalakumar
Collana Wiley series in nonlinear science
Soggetto topico Dynamics
Nonlinear theories
ISBN 1-282-01051-4
9786612010514
3-527-61754-X
3-527-61755-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto APPLIED NONLINEAR DYNAMICS; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 DISCRETE-TIME SYSTEMS; 1.2 CONTINUOUS-TIME SYSTEMS; 1.2.1 Nonautonomous Systems; 1.2.2 Autonomous Systems; 1.2.3 Phase Portraits and Flows; 1.3 ATTRACTING SETS; 1.4 CONCEPTS OF STABILITY; 1.4.1 Lyapunov Stability; 1.4.2 Asymptotic Stability; 1.4.3 Poincaré Stability; 1.4.4 Lagrange Stability (Bounded Stability); 1.4.5 Stability Through Lyapunov Function; 1.5 ATTRACTORS; 1.6 COMMENTS; 1.7 EXERCISES; 2 EQUILIBRIUM SOLUTIONS; 2.1 CONTINUOUS-TIME SYSTEMS; 2.1.1 Linearization Near an Equilibrium Solution
2.1.2 Classification and Stability of Equilibrium Solutions2.1.3 Eigenspaces and Invariant Manifolds; 2.1.4 Analytical Construction of Stable and Unstable Manifolds; 2.2 FIXED POINTS OF MAPS; 2.3 BIFURCATIONS OF CONTINUOUS SYSTEMS; 2.3.1 Local Bifurcations of Fixed Points; 2.3.2 Normal Forms for Bifurcations; 2.3.3 Bifurcation Diagrams and Sets; 2.3.4 Center Manifold Reduction; 2.3.5 The Lyapunov-Schmidt Method; 2.3.6 The Method of Multiple Scales; 2.3.7 Structural Stability; 2.3.8 Stability of Bifurcations to Perturbations; 2.3.9 Codimension of a Bifurcation; 2.3.10 Global Bifurcations
2.4 BIFURCATIONS OF MAPS2.5 EXERCISES; 3 PERIODIC SOLUTIONS; 3.1 PERIODIC SOLUTIONS; 3.1.1 Autonomous Systems; 3.1.2 Nonautonomous Systems; 3.1.3 Comments; 3.2 FLOQUET THEORY; 3.2.1 Autonomous Systems; 3.2.2 Nonautonomous Systems; 3.2.3 Comments on the Monodromy Matrix; 3.2.4 Manifolds of a Periodic Solution; 3.3 POINCARÉ MAPS; 3.3.1 Nonautonomous Systems; 3.3.2 Autonomous Systems; 3.4 BIFURCATIONS; 3.4.1 Symmetry-Breaking Bifurcation; 3.4.2 Cyclic-Fold Bifurcation; 3.4.3 Period-Doubling or Flip Bifurcation; 3.4.4 Transcritical Bifurcation; 3.4.5 Secondary Hopf or Neimark Bifurcation
3.5 ANALYTICAL CONSTRUCTIONS3.5.1 Method of Multiple Scales; 3.5.2 Center Manifold Reduction; 3.5.3 General Case; 3.6 EXERCISES; 4 QUASIPERIODIC SOLUTIONS; 4.1 POINCARÉ MAPS; 4.1.1 Winding Time and Rotation Number; 4.1.2 Second-Order Poincaré Map; 4.1.3 Comments; 4.2 CIRCLE MAP; 4.3 CONSTRUCTIONS; 4.3.1 Method of Multiple Scales; 4.3.2 Spectral Balance Method; 4.3.3 Poincaré Map Method; 4.4 STABILITY; 4.5 SYNCHRONIZATION; 4.6 EXERCISES; 5 CHAOS; 5.1 MAPS; 5.2 CONTINUOUS-TIME SYSTEMS; 5.3 PERIOD-DOUBLING SCENARIO; 5.4 INTERMITTENCY MECHANISMS; 5.4.1 Type I Intermittency
5.4.2 Type III Intermittency5.4.3 Type II Intermittency; 5.5 QUASIPERIODIC ROUTES; 5.5.1 Ruelle-Takens Scenario; 5.5.2 Torus Breakdown; 5.5.3 Torus Doubling; 5.6 CRISES; 5.7 MELNIKOV THEORY; 5.7.1 Homoclinic Tangles; 5.7.2 Heteroclinic Tangles; 5.7.3 Numerical Prediction of Manifold Intersections; 5.7.4 Analytical Prediction of Manifold Intersections; 5.7.5 Application of Melnikov's Method; 5.7.6 Comments; 5.8 BIFURCATIONS OF HOMOCLINIC ORBITS; 5.8.1 Planar Systems; 5.8.2 Orbits Homoclinic to a Saddle; 5.8.3 Orbits Homoclinic to a Saddle Focus; 5.8.4 Comments; 5.9 EXERCISES
6 NUMERICAL METHODS
Record Nr. UNISA-996203214403316
Nayfeh Ali Hasan <1933->  
New York, : Wiley, c1995
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Applied nonlinear dynamics [[electronic resource] ] : analytical, computational, and experimental methods / / Ali H. Nayfeh, Balakumar Balachandran
Applied nonlinear dynamics [[electronic resource] ] : analytical, computational, and experimental methods / / Ali H. Nayfeh, Balakumar Balachandran
Autore Nayfeh Ali Hasan <1933->
Pubbl/distr/stampa New York, : Wiley, c1995
Descrizione fisica 1 online resource (703 p.)
Disciplina 515.35
621.38131
Altri autori (Persone) BalachandranBalakumar
Collana Wiley series in nonlinear science
Soggetto topico Dynamics
Nonlinear theories
ISBN 1-282-01051-4
9786612010514
3-527-61754-X
3-527-61755-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto APPLIED NONLINEAR DYNAMICS; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 DISCRETE-TIME SYSTEMS; 1.2 CONTINUOUS-TIME SYSTEMS; 1.2.1 Nonautonomous Systems; 1.2.2 Autonomous Systems; 1.2.3 Phase Portraits and Flows; 1.3 ATTRACTING SETS; 1.4 CONCEPTS OF STABILITY; 1.4.1 Lyapunov Stability; 1.4.2 Asymptotic Stability; 1.4.3 Poincaré Stability; 1.4.4 Lagrange Stability (Bounded Stability); 1.4.5 Stability Through Lyapunov Function; 1.5 ATTRACTORS; 1.6 COMMENTS; 1.7 EXERCISES; 2 EQUILIBRIUM SOLUTIONS; 2.1 CONTINUOUS-TIME SYSTEMS; 2.1.1 Linearization Near an Equilibrium Solution
2.1.2 Classification and Stability of Equilibrium Solutions2.1.3 Eigenspaces and Invariant Manifolds; 2.1.4 Analytical Construction of Stable and Unstable Manifolds; 2.2 FIXED POINTS OF MAPS; 2.3 BIFURCATIONS OF CONTINUOUS SYSTEMS; 2.3.1 Local Bifurcations of Fixed Points; 2.3.2 Normal Forms for Bifurcations; 2.3.3 Bifurcation Diagrams and Sets; 2.3.4 Center Manifold Reduction; 2.3.5 The Lyapunov-Schmidt Method; 2.3.6 The Method of Multiple Scales; 2.3.7 Structural Stability; 2.3.8 Stability of Bifurcations to Perturbations; 2.3.9 Codimension of a Bifurcation; 2.3.10 Global Bifurcations
2.4 BIFURCATIONS OF MAPS2.5 EXERCISES; 3 PERIODIC SOLUTIONS; 3.1 PERIODIC SOLUTIONS; 3.1.1 Autonomous Systems; 3.1.2 Nonautonomous Systems; 3.1.3 Comments; 3.2 FLOQUET THEORY; 3.2.1 Autonomous Systems; 3.2.2 Nonautonomous Systems; 3.2.3 Comments on the Monodromy Matrix; 3.2.4 Manifolds of a Periodic Solution; 3.3 POINCARÉ MAPS; 3.3.1 Nonautonomous Systems; 3.3.2 Autonomous Systems; 3.4 BIFURCATIONS; 3.4.1 Symmetry-Breaking Bifurcation; 3.4.2 Cyclic-Fold Bifurcation; 3.4.3 Period-Doubling or Flip Bifurcation; 3.4.4 Transcritical Bifurcation; 3.4.5 Secondary Hopf or Neimark Bifurcation
3.5 ANALYTICAL CONSTRUCTIONS3.5.1 Method of Multiple Scales; 3.5.2 Center Manifold Reduction; 3.5.3 General Case; 3.6 EXERCISES; 4 QUASIPERIODIC SOLUTIONS; 4.1 POINCARÉ MAPS; 4.1.1 Winding Time and Rotation Number; 4.1.2 Second-Order Poincaré Map; 4.1.3 Comments; 4.2 CIRCLE MAP; 4.3 CONSTRUCTIONS; 4.3.1 Method of Multiple Scales; 4.3.2 Spectral Balance Method; 4.3.3 Poincaré Map Method; 4.4 STABILITY; 4.5 SYNCHRONIZATION; 4.6 EXERCISES; 5 CHAOS; 5.1 MAPS; 5.2 CONTINUOUS-TIME SYSTEMS; 5.3 PERIOD-DOUBLING SCENARIO; 5.4 INTERMITTENCY MECHANISMS; 5.4.1 Type I Intermittency
5.4.2 Type III Intermittency5.4.3 Type II Intermittency; 5.5 QUASIPERIODIC ROUTES; 5.5.1 Ruelle-Takens Scenario; 5.5.2 Torus Breakdown; 5.5.3 Torus Doubling; 5.6 CRISES; 5.7 MELNIKOV THEORY; 5.7.1 Homoclinic Tangles; 5.7.2 Heteroclinic Tangles; 5.7.3 Numerical Prediction of Manifold Intersections; 5.7.4 Analytical Prediction of Manifold Intersections; 5.7.5 Application of Melnikov's Method; 5.7.6 Comments; 5.8 BIFURCATIONS OF HOMOCLINIC ORBITS; 5.8.1 Planar Systems; 5.8.2 Orbits Homoclinic to a Saddle; 5.8.3 Orbits Homoclinic to a Saddle Focus; 5.8.4 Comments; 5.9 EXERCISES
6 NUMERICAL METHODS
Record Nr. UNINA-9910830038503321
Nayfeh Ali Hasan <1933->  
New York, : Wiley, c1995
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied nonlinear dynamics : analytical, computational, and experimental methods / / Ali H. Nayfeh, Balakumar Balachandran
Applied nonlinear dynamics : analytical, computational, and experimental methods / / Ali H. Nayfeh, Balakumar Balachandran
Autore Nayfeh Ali Hasan <1933->
Pubbl/distr/stampa New York, : Wiley, c1995
Descrizione fisica 1 online resource (703 p.)
Disciplina 515.35
621.38131
Altri autori (Persone) BalachandranBalakumar
Collana Wiley series in nonlinear science
Soggetto topico Dynamics
Nonlinear theories
ISBN 9786612010514
9781282010512
1282010514
9783527617548
352761754X
9783527617555
3527617558
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto APPLIED NONLINEAR DYNAMICS; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 DISCRETE-TIME SYSTEMS; 1.2 CONTINUOUS-TIME SYSTEMS; 1.2.1 Nonautonomous Systems; 1.2.2 Autonomous Systems; 1.2.3 Phase Portraits and Flows; 1.3 ATTRACTING SETS; 1.4 CONCEPTS OF STABILITY; 1.4.1 Lyapunov Stability; 1.4.2 Asymptotic Stability; 1.4.3 Poincaré Stability; 1.4.4 Lagrange Stability (Bounded Stability); 1.4.5 Stability Through Lyapunov Function; 1.5 ATTRACTORS; 1.6 COMMENTS; 1.7 EXERCISES; 2 EQUILIBRIUM SOLUTIONS; 2.1 CONTINUOUS-TIME SYSTEMS; 2.1.1 Linearization Near an Equilibrium Solution
2.1.2 Classification and Stability of Equilibrium Solutions2.1.3 Eigenspaces and Invariant Manifolds; 2.1.4 Analytical Construction of Stable and Unstable Manifolds; 2.2 FIXED POINTS OF MAPS; 2.3 BIFURCATIONS OF CONTINUOUS SYSTEMS; 2.3.1 Local Bifurcations of Fixed Points; 2.3.2 Normal Forms for Bifurcations; 2.3.3 Bifurcation Diagrams and Sets; 2.3.4 Center Manifold Reduction; 2.3.5 The Lyapunov-Schmidt Method; 2.3.6 The Method of Multiple Scales; 2.3.7 Structural Stability; 2.3.8 Stability of Bifurcations to Perturbations; 2.3.9 Codimension of a Bifurcation; 2.3.10 Global Bifurcations
2.4 BIFURCATIONS OF MAPS2.5 EXERCISES; 3 PERIODIC SOLUTIONS; 3.1 PERIODIC SOLUTIONS; 3.1.1 Autonomous Systems; 3.1.2 Nonautonomous Systems; 3.1.3 Comments; 3.2 FLOQUET THEORY; 3.2.1 Autonomous Systems; 3.2.2 Nonautonomous Systems; 3.2.3 Comments on the Monodromy Matrix; 3.2.4 Manifolds of a Periodic Solution; 3.3 POINCARÉ MAPS; 3.3.1 Nonautonomous Systems; 3.3.2 Autonomous Systems; 3.4 BIFURCATIONS; 3.4.1 Symmetry-Breaking Bifurcation; 3.4.2 Cyclic-Fold Bifurcation; 3.4.3 Period-Doubling or Flip Bifurcation; 3.4.4 Transcritical Bifurcation; 3.4.5 Secondary Hopf or Neimark Bifurcation
3.5 ANALYTICAL CONSTRUCTIONS3.5.1 Method of Multiple Scales; 3.5.2 Center Manifold Reduction; 3.5.3 General Case; 3.6 EXERCISES; 4 QUASIPERIODIC SOLUTIONS; 4.1 POINCARÉ MAPS; 4.1.1 Winding Time and Rotation Number; 4.1.2 Second-Order Poincaré Map; 4.1.3 Comments; 4.2 CIRCLE MAP; 4.3 CONSTRUCTIONS; 4.3.1 Method of Multiple Scales; 4.3.2 Spectral Balance Method; 4.3.3 Poincaré Map Method; 4.4 STABILITY; 4.5 SYNCHRONIZATION; 4.6 EXERCISES; 5 CHAOS; 5.1 MAPS; 5.2 CONTINUOUS-TIME SYSTEMS; 5.3 PERIOD-DOUBLING SCENARIO; 5.4 INTERMITTENCY MECHANISMS; 5.4.1 Type I Intermittency
5.4.2 Type III Intermittency5.4.3 Type II Intermittency; 5.5 QUASIPERIODIC ROUTES; 5.5.1 Ruelle-Takens Scenario; 5.5.2 Torus Breakdown; 5.5.3 Torus Doubling; 5.6 CRISES; 5.7 MELNIKOV THEORY; 5.7.1 Homoclinic Tangles; 5.7.2 Heteroclinic Tangles; 5.7.3 Numerical Prediction of Manifold Intersections; 5.7.4 Analytical Prediction of Manifold Intersections; 5.7.5 Application of Melnikov's Method; 5.7.6 Comments; 5.8 BIFURCATIONS OF HOMOCLINIC ORBITS; 5.8.1 Planar Systems; 5.8.2 Orbits Homoclinic to a Saddle; 5.8.3 Orbits Homoclinic to a Saddle Focus; 5.8.4 Comments; 5.9 EXERCISES
6 NUMERICAL METHODS
Record Nr. UNINA-9911019151103321
Nayfeh Ali Hasan <1933->  
New York, : Wiley, c1995
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The method of normal forms [[electronic resource] /] / Ali Hasan Nayfeh
The method of normal forms [[electronic resource] /] / Ali Hasan Nayfeh
Autore Nayfeh Ali Hasan <1933->
Edizione [2nd, updated and enl. ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (343 p.)
Disciplina 512.9/44
512.944
Soggetto topico Normal forms (Mathematics)
Differential equations - Numerical solutions
Soggetto genere / forma Electronic books.
ISBN 3-527-63577-7
1-283-92749-7
3-527-63578-5
3-527-63580-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The Method of Normal Forms; Contents; Preface; Introduction; 1 SDOF Autonomous Systems; 1.1 Introduction; 1.2 Duffing Equation; 1.3 Rayleigh Equation; 1.4 Duffing-Rayleigh-van der Pol Equation; 1.5 An Oscillator with Quadratic and Cubic Nonlinearities; 1.5.1 Successive Transformations; 1.5.2 The Method of Multiple Scales; 1.5.3 A Single Transformation; 1.6 A General System with Quadratic and Cubic Nonlinearities; 1.7 The van der Pol Oscillator; 1.7.1 The Method of Normal Forms; 1.7.2 The Method of Multiple Scales; 1.8 Exercises; 2 Systems of First-Order Equations; 2.1 Introduction
2.2 A Two-Dimensional System with Diagonal Linear Part2.3 A Two-Dimensional System with a Nonsemisimple Linear Form; 2.4 An n-Dimensional System with Diagonal Linear Part; 2.5 A Two-Dimensional System with Purely Imaginary Eigenvalues; 2.5.1 The Method of Normal Forms; 2.5.2 The Method of Multiple Scales; 2.6 A Two-Dimensional System with Zero Eigenvalues; 2.7 A Three-Dimensional System with Zeroand Two Purely Imaginary Eigenvalues; 2.8 The Mathieu Equation; 2.9 Exercises; 3 Maps; 3.1 Linear Maps; 3.1.1 Case of Distinct Eigenvalues; 3.1.2 Case of Repeated Eigenvalues; 3.2 Nonlinear Maps
3.3 Center-Manifold Reduction3.4 Local Bifurcations; 3.4.1 Fold or Tangent or Saddle-Node Bifurcation; 3.4.2 Transcritical Bifurcation; 3.4.3 Pitchfork Bifurcation; 3.4.4 Flip or Period-Doubling Bifurcation; 3.4.5 Hopf or Neimark-Sacker Bifurcation; 3.5 Exercises; 4 Bifurcations of Continuous Systems; 4.1 Linear Systems; 4.1.1 Case of Distinct Eigenvalues; 4.1.2 Case of Repeated Eigenvalues; 4.2 Fixed Points of Nonlinear Systems; 4.2.1 Stability of Fixed Points; 4.2.2 Classification of Fixed Points; 4.2.3 Hartman-Grobman and Shoshitaishvili Theorems; 4.3 Center-Manifold Reduction
4.4 Local Bifurcations of Fixed Points4.4.1 Saddle-Node Bifurcation; 4.4.2 Nonbifurcation Point; 4.4.3 Transcritical Bifurcation; 4.4.4 Pitchfork Bifurcation; 4.4.5 Hopf Bifurcations; 4.5 Normal Forms of Static Bifurcations; 4.5.1 The Method of Multiple Scales; 4.5.2 Center-Manifold Reduction; 4.5.3 A Projection Method; 4.6 Normal Form of Hopf Bifurcation; 4.6.1 The Method of Multiple Scales; 4.6.2 Center-Manifold Reduction; 4.6.3 Projection Method; 4.7 Exercises; 5 Forced Oscillations of the Duffing Oscillator; 5.1 Primary Resonance; 5.2 Subharmonic Resonance of Order One-Third
5.3 Superharmonic Resonance of Order Three5.4 An Alternate Approach; 5.4.1 Subharmonic Case; 5.4.2 Superharmonic Case; 5.5 Exercises; 6 Forced Oscillations of SDOF Systems; 6.1 Introduction; 6.2 Primary Resonance; 6.3 Subharmonic Resonance of Order One-Half; 6.4 Superharmonic Resonance of Order Two; 6.5 Subharmonic Resonance of Order One-Third; 7 Parametrically Excited Systems; 7.1 The Mathieu Equation; 7.1.1 Fundamental Parametric Resonance; 7.1.2 Principal Parametric Resonance; 7.2 Multiple-Degree-of-Freedom Systems; 7.2.1 The Case of Near 2+1; 7.2.2 The Case of Near 2-1
7.2.3 The Case of Near 2+1 and 3-2
Record Nr. UNINA-9910130959903321
Nayfeh Ali Hasan <1933->  
Weinheim, Germany, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The method of normal forms [[electronic resource] /] / Ali Hasan Nayfeh
The method of normal forms [[electronic resource] /] / Ali Hasan Nayfeh
Autore Nayfeh Ali Hasan <1933->
Edizione [2nd, updated and enl. ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (343 p.)
Disciplina 512.9/44
512.944
Soggetto topico Normal forms (Mathematics)
Differential equations - Numerical solutions
ISBN 3-527-63577-7
1-283-92749-7
3-527-63578-5
3-527-63580-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The Method of Normal Forms; Contents; Preface; Introduction; 1 SDOF Autonomous Systems; 1.1 Introduction; 1.2 Duffing Equation; 1.3 Rayleigh Equation; 1.4 Duffing-Rayleigh-van der Pol Equation; 1.5 An Oscillator with Quadratic and Cubic Nonlinearities; 1.5.1 Successive Transformations; 1.5.2 The Method of Multiple Scales; 1.5.3 A Single Transformation; 1.6 A General System with Quadratic and Cubic Nonlinearities; 1.7 The van der Pol Oscillator; 1.7.1 The Method of Normal Forms; 1.7.2 The Method of Multiple Scales; 1.8 Exercises; 2 Systems of First-Order Equations; 2.1 Introduction
2.2 A Two-Dimensional System with Diagonal Linear Part2.3 A Two-Dimensional System with a Nonsemisimple Linear Form; 2.4 An n-Dimensional System with Diagonal Linear Part; 2.5 A Two-Dimensional System with Purely Imaginary Eigenvalues; 2.5.1 The Method of Normal Forms; 2.5.2 The Method of Multiple Scales; 2.6 A Two-Dimensional System with Zero Eigenvalues; 2.7 A Three-Dimensional System with Zeroand Two Purely Imaginary Eigenvalues; 2.8 The Mathieu Equation; 2.9 Exercises; 3 Maps; 3.1 Linear Maps; 3.1.1 Case of Distinct Eigenvalues; 3.1.2 Case of Repeated Eigenvalues; 3.2 Nonlinear Maps
3.3 Center-Manifold Reduction3.4 Local Bifurcations; 3.4.1 Fold or Tangent or Saddle-Node Bifurcation; 3.4.2 Transcritical Bifurcation; 3.4.3 Pitchfork Bifurcation; 3.4.4 Flip or Period-Doubling Bifurcation; 3.4.5 Hopf or Neimark-Sacker Bifurcation; 3.5 Exercises; 4 Bifurcations of Continuous Systems; 4.1 Linear Systems; 4.1.1 Case of Distinct Eigenvalues; 4.1.2 Case of Repeated Eigenvalues; 4.2 Fixed Points of Nonlinear Systems; 4.2.1 Stability of Fixed Points; 4.2.2 Classification of Fixed Points; 4.2.3 Hartman-Grobman and Shoshitaishvili Theorems; 4.3 Center-Manifold Reduction
4.4 Local Bifurcations of Fixed Points4.4.1 Saddle-Node Bifurcation; 4.4.2 Nonbifurcation Point; 4.4.3 Transcritical Bifurcation; 4.4.4 Pitchfork Bifurcation; 4.4.5 Hopf Bifurcations; 4.5 Normal Forms of Static Bifurcations; 4.5.1 The Method of Multiple Scales; 4.5.2 Center-Manifold Reduction; 4.5.3 A Projection Method; 4.6 Normal Form of Hopf Bifurcation; 4.6.1 The Method of Multiple Scales; 4.6.2 Center-Manifold Reduction; 4.6.3 Projection Method; 4.7 Exercises; 5 Forced Oscillations of the Duffing Oscillator; 5.1 Primary Resonance; 5.2 Subharmonic Resonance of Order One-Third
5.3 Superharmonic Resonance of Order Three5.4 An Alternate Approach; 5.4.1 Subharmonic Case; 5.4.2 Superharmonic Case; 5.5 Exercises; 6 Forced Oscillations of SDOF Systems; 6.1 Introduction; 6.2 Primary Resonance; 6.3 Subharmonic Resonance of Order One-Half; 6.4 Superharmonic Resonance of Order Two; 6.5 Subharmonic Resonance of Order One-Third; 7 Parametrically Excited Systems; 7.1 The Mathieu Equation; 7.1.1 Fundamental Parametric Resonance; 7.1.2 Principal Parametric Resonance; 7.2 Multiple-Degree-of-Freedom Systems; 7.2.1 The Case of Near 2+1; 7.2.2 The Case of Near 2-1
7.2.3 The Case of Near 2+1 and 3-2
Record Nr. UNINA-9910829822303321
Nayfeh Ali Hasan <1933->  
Weinheim, Germany, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The method of normal forms / / Ali Hasan Nayfeh
The method of normal forms / / Ali Hasan Nayfeh
Autore Nayfeh Ali Hasan <1933->
Edizione [2nd, updated and enl. ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (343 p.)
Disciplina 512.944
Soggetto topico Normal forms (Mathematics)
Differential equations - Numerical solutions
ISBN 9783527635771
3527635777
9781283927499
1283927497
9783527635788
3527635785
9783527635801
3527635807
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The Method of Normal Forms; Contents; Preface; Introduction; 1 SDOF Autonomous Systems; 1.1 Introduction; 1.2 Duffing Equation; 1.3 Rayleigh Equation; 1.4 Duffing-Rayleigh-van der Pol Equation; 1.5 An Oscillator with Quadratic and Cubic Nonlinearities; 1.5.1 Successive Transformations; 1.5.2 The Method of Multiple Scales; 1.5.3 A Single Transformation; 1.6 A General System with Quadratic and Cubic Nonlinearities; 1.7 The van der Pol Oscillator; 1.7.1 The Method of Normal Forms; 1.7.2 The Method of Multiple Scales; 1.8 Exercises; 2 Systems of First-Order Equations; 2.1 Introduction
2.2 A Two-Dimensional System with Diagonal Linear Part2.3 A Two-Dimensional System with a Nonsemisimple Linear Form; 2.4 An n-Dimensional System with Diagonal Linear Part; 2.5 A Two-Dimensional System with Purely Imaginary Eigenvalues; 2.5.1 The Method of Normal Forms; 2.5.2 The Method of Multiple Scales; 2.6 A Two-Dimensional System with Zero Eigenvalues; 2.7 A Three-Dimensional System with Zeroand Two Purely Imaginary Eigenvalues; 2.8 The Mathieu Equation; 2.9 Exercises; 3 Maps; 3.1 Linear Maps; 3.1.1 Case of Distinct Eigenvalues; 3.1.2 Case of Repeated Eigenvalues; 3.2 Nonlinear Maps
3.3 Center-Manifold Reduction3.4 Local Bifurcations; 3.4.1 Fold or Tangent or Saddle-Node Bifurcation; 3.4.2 Transcritical Bifurcation; 3.4.3 Pitchfork Bifurcation; 3.4.4 Flip or Period-Doubling Bifurcation; 3.4.5 Hopf or Neimark-Sacker Bifurcation; 3.5 Exercises; 4 Bifurcations of Continuous Systems; 4.1 Linear Systems; 4.1.1 Case of Distinct Eigenvalues; 4.1.2 Case of Repeated Eigenvalues; 4.2 Fixed Points of Nonlinear Systems; 4.2.1 Stability of Fixed Points; 4.2.2 Classification of Fixed Points; 4.2.3 Hartman-Grobman and Shoshitaishvili Theorems; 4.3 Center-Manifold Reduction
4.4 Local Bifurcations of Fixed Points4.4.1 Saddle-Node Bifurcation; 4.4.2 Nonbifurcation Point; 4.4.3 Transcritical Bifurcation; 4.4.4 Pitchfork Bifurcation; 4.4.5 Hopf Bifurcations; 4.5 Normal Forms of Static Bifurcations; 4.5.1 The Method of Multiple Scales; 4.5.2 Center-Manifold Reduction; 4.5.3 A Projection Method; 4.6 Normal Form of Hopf Bifurcation; 4.6.1 The Method of Multiple Scales; 4.6.2 Center-Manifold Reduction; 4.6.3 Projection Method; 4.7 Exercises; 5 Forced Oscillations of the Duffing Oscillator; 5.1 Primary Resonance; 5.2 Subharmonic Resonance of Order One-Third
5.3 Superharmonic Resonance of Order Three5.4 An Alternate Approach; 5.4.1 Subharmonic Case; 5.4.2 Superharmonic Case; 5.5 Exercises; 6 Forced Oscillations of SDOF Systems; 6.1 Introduction; 6.2 Primary Resonance; 6.3 Subharmonic Resonance of Order One-Half; 6.4 Superharmonic Resonance of Order Two; 6.5 Subharmonic Resonance of Order One-Third; 7 Parametrically Excited Systems; 7.1 The Mathieu Equation; 7.1.1 Fundamental Parametric Resonance; 7.1.2 Principal Parametric Resonance; 7.2 Multiple-Degree-of-Freedom Systems; 7.2.1 The Case of Near 2+1; 7.2.2 The Case of Near 2-1
7.2.3 The Case of Near 2+1 and 3-2
Record Nr. UNINA-9911018839703321
Nayfeh Ali Hasan <1933->  
Weinheim, Germany, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui