top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied nonlinear dynamics [[electronic resource] ] : analytical, computational, and experimental methods / / Ali H. Nayfeh, Balakumar Balachandran
Applied nonlinear dynamics [[electronic resource] ] : analytical, computational, and experimental methods / / Ali H. Nayfeh, Balakumar Balachandran
Autore Nayfeh Ali Hasan <1933->
Pubbl/distr/stampa New York, : Wiley, c1995
Descrizione fisica 1 online resource (703 p.)
Disciplina 515.35
621.38131
Altri autori (Persone) BalachandranBalakumar
Collana Wiley series in nonlinear science
Soggetto topico Dynamics
Nonlinear theories
ISBN 1-282-01051-4
9786612010514
3-527-61754-X
3-527-61755-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto APPLIED NONLINEAR DYNAMICS; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 DISCRETE-TIME SYSTEMS; 1.2 CONTINUOUS-TIME SYSTEMS; 1.2.1 Nonautonomous Systems; 1.2.2 Autonomous Systems; 1.2.3 Phase Portraits and Flows; 1.3 ATTRACTING SETS; 1.4 CONCEPTS OF STABILITY; 1.4.1 Lyapunov Stability; 1.4.2 Asymptotic Stability; 1.4.3 Poincaré Stability; 1.4.4 Lagrange Stability (Bounded Stability); 1.4.5 Stability Through Lyapunov Function; 1.5 ATTRACTORS; 1.6 COMMENTS; 1.7 EXERCISES; 2 EQUILIBRIUM SOLUTIONS; 2.1 CONTINUOUS-TIME SYSTEMS; 2.1.1 Linearization Near an Equilibrium Solution
2.1.2 Classification and Stability of Equilibrium Solutions2.1.3 Eigenspaces and Invariant Manifolds; 2.1.4 Analytical Construction of Stable and Unstable Manifolds; 2.2 FIXED POINTS OF MAPS; 2.3 BIFURCATIONS OF CONTINUOUS SYSTEMS; 2.3.1 Local Bifurcations of Fixed Points; 2.3.2 Normal Forms for Bifurcations; 2.3.3 Bifurcation Diagrams and Sets; 2.3.4 Center Manifold Reduction; 2.3.5 The Lyapunov-Schmidt Method; 2.3.6 The Method of Multiple Scales; 2.3.7 Structural Stability; 2.3.8 Stability of Bifurcations to Perturbations; 2.3.9 Codimension of a Bifurcation; 2.3.10 Global Bifurcations
2.4 BIFURCATIONS OF MAPS2.5 EXERCISES; 3 PERIODIC SOLUTIONS; 3.1 PERIODIC SOLUTIONS; 3.1.1 Autonomous Systems; 3.1.2 Nonautonomous Systems; 3.1.3 Comments; 3.2 FLOQUET THEORY; 3.2.1 Autonomous Systems; 3.2.2 Nonautonomous Systems; 3.2.3 Comments on the Monodromy Matrix; 3.2.4 Manifolds of a Periodic Solution; 3.3 POINCARÉ MAPS; 3.3.1 Nonautonomous Systems; 3.3.2 Autonomous Systems; 3.4 BIFURCATIONS; 3.4.1 Symmetry-Breaking Bifurcation; 3.4.2 Cyclic-Fold Bifurcation; 3.4.3 Period-Doubling or Flip Bifurcation; 3.4.4 Transcritical Bifurcation; 3.4.5 Secondary Hopf or Neimark Bifurcation
3.5 ANALYTICAL CONSTRUCTIONS3.5.1 Method of Multiple Scales; 3.5.2 Center Manifold Reduction; 3.5.3 General Case; 3.6 EXERCISES; 4 QUASIPERIODIC SOLUTIONS; 4.1 POINCARÉ MAPS; 4.1.1 Winding Time and Rotation Number; 4.1.2 Second-Order Poincaré Map; 4.1.3 Comments; 4.2 CIRCLE MAP; 4.3 CONSTRUCTIONS; 4.3.1 Method of Multiple Scales; 4.3.2 Spectral Balance Method; 4.3.3 Poincaré Map Method; 4.4 STABILITY; 4.5 SYNCHRONIZATION; 4.6 EXERCISES; 5 CHAOS; 5.1 MAPS; 5.2 CONTINUOUS-TIME SYSTEMS; 5.3 PERIOD-DOUBLING SCENARIO; 5.4 INTERMITTENCY MECHANISMS; 5.4.1 Type I Intermittency
5.4.2 Type III Intermittency5.4.3 Type II Intermittency; 5.5 QUASIPERIODIC ROUTES; 5.5.1 Ruelle-Takens Scenario; 5.5.2 Torus Breakdown; 5.5.3 Torus Doubling; 5.6 CRISES; 5.7 MELNIKOV THEORY; 5.7.1 Homoclinic Tangles; 5.7.2 Heteroclinic Tangles; 5.7.3 Numerical Prediction of Manifold Intersections; 5.7.4 Analytical Prediction of Manifold Intersections; 5.7.5 Application of Melnikov's Method; 5.7.6 Comments; 5.8 BIFURCATIONS OF HOMOCLINIC ORBITS; 5.8.1 Planar Systems; 5.8.2 Orbits Homoclinic to a Saddle; 5.8.3 Orbits Homoclinic to a Saddle Focus; 5.8.4 Comments; 5.9 EXERCISES
6 NUMERICAL METHODS
Record Nr. UNINA-9910144739203321
Nayfeh Ali Hasan <1933->  
New York, : Wiley, c1995
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied nonlinear dynamics [[electronic resource] ] : analytical, computational, and experimental methods / / Ali H. Nayfeh, Balakumar Balachandran
Applied nonlinear dynamics [[electronic resource] ] : analytical, computational, and experimental methods / / Ali H. Nayfeh, Balakumar Balachandran
Autore Nayfeh Ali Hasan <1933->
Pubbl/distr/stampa New York, : Wiley, c1995
Descrizione fisica 1 online resource (703 p.)
Disciplina 515.35
621.38131
Altri autori (Persone) BalachandranBalakumar
Collana Wiley series in nonlinear science
Soggetto topico Dynamics
Nonlinear theories
ISBN 1-282-01051-4
9786612010514
3-527-61754-X
3-527-61755-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto APPLIED NONLINEAR DYNAMICS; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 DISCRETE-TIME SYSTEMS; 1.2 CONTINUOUS-TIME SYSTEMS; 1.2.1 Nonautonomous Systems; 1.2.2 Autonomous Systems; 1.2.3 Phase Portraits and Flows; 1.3 ATTRACTING SETS; 1.4 CONCEPTS OF STABILITY; 1.4.1 Lyapunov Stability; 1.4.2 Asymptotic Stability; 1.4.3 Poincaré Stability; 1.4.4 Lagrange Stability (Bounded Stability); 1.4.5 Stability Through Lyapunov Function; 1.5 ATTRACTORS; 1.6 COMMENTS; 1.7 EXERCISES; 2 EQUILIBRIUM SOLUTIONS; 2.1 CONTINUOUS-TIME SYSTEMS; 2.1.1 Linearization Near an Equilibrium Solution
2.1.2 Classification and Stability of Equilibrium Solutions2.1.3 Eigenspaces and Invariant Manifolds; 2.1.4 Analytical Construction of Stable and Unstable Manifolds; 2.2 FIXED POINTS OF MAPS; 2.3 BIFURCATIONS OF CONTINUOUS SYSTEMS; 2.3.1 Local Bifurcations of Fixed Points; 2.3.2 Normal Forms for Bifurcations; 2.3.3 Bifurcation Diagrams and Sets; 2.3.4 Center Manifold Reduction; 2.3.5 The Lyapunov-Schmidt Method; 2.3.6 The Method of Multiple Scales; 2.3.7 Structural Stability; 2.3.8 Stability of Bifurcations to Perturbations; 2.3.9 Codimension of a Bifurcation; 2.3.10 Global Bifurcations
2.4 BIFURCATIONS OF MAPS2.5 EXERCISES; 3 PERIODIC SOLUTIONS; 3.1 PERIODIC SOLUTIONS; 3.1.1 Autonomous Systems; 3.1.2 Nonautonomous Systems; 3.1.3 Comments; 3.2 FLOQUET THEORY; 3.2.1 Autonomous Systems; 3.2.2 Nonautonomous Systems; 3.2.3 Comments on the Monodromy Matrix; 3.2.4 Manifolds of a Periodic Solution; 3.3 POINCARÉ MAPS; 3.3.1 Nonautonomous Systems; 3.3.2 Autonomous Systems; 3.4 BIFURCATIONS; 3.4.1 Symmetry-Breaking Bifurcation; 3.4.2 Cyclic-Fold Bifurcation; 3.4.3 Period-Doubling or Flip Bifurcation; 3.4.4 Transcritical Bifurcation; 3.4.5 Secondary Hopf or Neimark Bifurcation
3.5 ANALYTICAL CONSTRUCTIONS3.5.1 Method of Multiple Scales; 3.5.2 Center Manifold Reduction; 3.5.3 General Case; 3.6 EXERCISES; 4 QUASIPERIODIC SOLUTIONS; 4.1 POINCARÉ MAPS; 4.1.1 Winding Time and Rotation Number; 4.1.2 Second-Order Poincaré Map; 4.1.3 Comments; 4.2 CIRCLE MAP; 4.3 CONSTRUCTIONS; 4.3.1 Method of Multiple Scales; 4.3.2 Spectral Balance Method; 4.3.3 Poincaré Map Method; 4.4 STABILITY; 4.5 SYNCHRONIZATION; 4.6 EXERCISES; 5 CHAOS; 5.1 MAPS; 5.2 CONTINUOUS-TIME SYSTEMS; 5.3 PERIOD-DOUBLING SCENARIO; 5.4 INTERMITTENCY MECHANISMS; 5.4.1 Type I Intermittency
5.4.2 Type III Intermittency5.4.3 Type II Intermittency; 5.5 QUASIPERIODIC ROUTES; 5.5.1 Ruelle-Takens Scenario; 5.5.2 Torus Breakdown; 5.5.3 Torus Doubling; 5.6 CRISES; 5.7 MELNIKOV THEORY; 5.7.1 Homoclinic Tangles; 5.7.2 Heteroclinic Tangles; 5.7.3 Numerical Prediction of Manifold Intersections; 5.7.4 Analytical Prediction of Manifold Intersections; 5.7.5 Application of Melnikov's Method; 5.7.6 Comments; 5.8 BIFURCATIONS OF HOMOCLINIC ORBITS; 5.8.1 Planar Systems; 5.8.2 Orbits Homoclinic to a Saddle; 5.8.3 Orbits Homoclinic to a Saddle Focus; 5.8.4 Comments; 5.9 EXERCISES
6 NUMERICAL METHODS
Record Nr. UNISA-996203214403316
Nayfeh Ali Hasan <1933->  
New York, : Wiley, c1995
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Applied nonlinear dynamics [[electronic resource] ] : analytical, computational, and experimental methods / / Ali H. Nayfeh, Balakumar Balachandran
Applied nonlinear dynamics [[electronic resource] ] : analytical, computational, and experimental methods / / Ali H. Nayfeh, Balakumar Balachandran
Autore Nayfeh Ali Hasan <1933->
Pubbl/distr/stampa New York, : Wiley, c1995
Descrizione fisica 1 online resource (703 p.)
Disciplina 515.35
621.38131
Altri autori (Persone) BalachandranBalakumar
Collana Wiley series in nonlinear science
Soggetto topico Dynamics
Nonlinear theories
ISBN 1-282-01051-4
9786612010514
3-527-61754-X
3-527-61755-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto APPLIED NONLINEAR DYNAMICS; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 DISCRETE-TIME SYSTEMS; 1.2 CONTINUOUS-TIME SYSTEMS; 1.2.1 Nonautonomous Systems; 1.2.2 Autonomous Systems; 1.2.3 Phase Portraits and Flows; 1.3 ATTRACTING SETS; 1.4 CONCEPTS OF STABILITY; 1.4.1 Lyapunov Stability; 1.4.2 Asymptotic Stability; 1.4.3 Poincaré Stability; 1.4.4 Lagrange Stability (Bounded Stability); 1.4.5 Stability Through Lyapunov Function; 1.5 ATTRACTORS; 1.6 COMMENTS; 1.7 EXERCISES; 2 EQUILIBRIUM SOLUTIONS; 2.1 CONTINUOUS-TIME SYSTEMS; 2.1.1 Linearization Near an Equilibrium Solution
2.1.2 Classification and Stability of Equilibrium Solutions2.1.3 Eigenspaces and Invariant Manifolds; 2.1.4 Analytical Construction of Stable and Unstable Manifolds; 2.2 FIXED POINTS OF MAPS; 2.3 BIFURCATIONS OF CONTINUOUS SYSTEMS; 2.3.1 Local Bifurcations of Fixed Points; 2.3.2 Normal Forms for Bifurcations; 2.3.3 Bifurcation Diagrams and Sets; 2.3.4 Center Manifold Reduction; 2.3.5 The Lyapunov-Schmidt Method; 2.3.6 The Method of Multiple Scales; 2.3.7 Structural Stability; 2.3.8 Stability of Bifurcations to Perturbations; 2.3.9 Codimension of a Bifurcation; 2.3.10 Global Bifurcations
2.4 BIFURCATIONS OF MAPS2.5 EXERCISES; 3 PERIODIC SOLUTIONS; 3.1 PERIODIC SOLUTIONS; 3.1.1 Autonomous Systems; 3.1.2 Nonautonomous Systems; 3.1.3 Comments; 3.2 FLOQUET THEORY; 3.2.1 Autonomous Systems; 3.2.2 Nonautonomous Systems; 3.2.3 Comments on the Monodromy Matrix; 3.2.4 Manifolds of a Periodic Solution; 3.3 POINCARÉ MAPS; 3.3.1 Nonautonomous Systems; 3.3.2 Autonomous Systems; 3.4 BIFURCATIONS; 3.4.1 Symmetry-Breaking Bifurcation; 3.4.2 Cyclic-Fold Bifurcation; 3.4.3 Period-Doubling or Flip Bifurcation; 3.4.4 Transcritical Bifurcation; 3.4.5 Secondary Hopf or Neimark Bifurcation
3.5 ANALYTICAL CONSTRUCTIONS3.5.1 Method of Multiple Scales; 3.5.2 Center Manifold Reduction; 3.5.3 General Case; 3.6 EXERCISES; 4 QUASIPERIODIC SOLUTIONS; 4.1 POINCARÉ MAPS; 4.1.1 Winding Time and Rotation Number; 4.1.2 Second-Order Poincaré Map; 4.1.3 Comments; 4.2 CIRCLE MAP; 4.3 CONSTRUCTIONS; 4.3.1 Method of Multiple Scales; 4.3.2 Spectral Balance Method; 4.3.3 Poincaré Map Method; 4.4 STABILITY; 4.5 SYNCHRONIZATION; 4.6 EXERCISES; 5 CHAOS; 5.1 MAPS; 5.2 CONTINUOUS-TIME SYSTEMS; 5.3 PERIOD-DOUBLING SCENARIO; 5.4 INTERMITTENCY MECHANISMS; 5.4.1 Type I Intermittency
5.4.2 Type III Intermittency5.4.3 Type II Intermittency; 5.5 QUASIPERIODIC ROUTES; 5.5.1 Ruelle-Takens Scenario; 5.5.2 Torus Breakdown; 5.5.3 Torus Doubling; 5.6 CRISES; 5.7 MELNIKOV THEORY; 5.7.1 Homoclinic Tangles; 5.7.2 Heteroclinic Tangles; 5.7.3 Numerical Prediction of Manifold Intersections; 5.7.4 Analytical Prediction of Manifold Intersections; 5.7.5 Application of Melnikov's Method; 5.7.6 Comments; 5.8 BIFURCATIONS OF HOMOCLINIC ORBITS; 5.8.1 Planar Systems; 5.8.2 Orbits Homoclinic to a Saddle; 5.8.3 Orbits Homoclinic to a Saddle Focus; 5.8.4 Comments; 5.9 EXERCISES
6 NUMERICAL METHODS
Record Nr. UNINA-9910830038503321
Nayfeh Ali Hasan <1933->  
New York, : Wiley, c1995
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied nonlinear dynamics : analytical, computational, and experimental methods / / Ali H. Nayfeh, Balakumar Balachandran
Applied nonlinear dynamics : analytical, computational, and experimental methods / / Ali H. Nayfeh, Balakumar Balachandran
Autore Nayfeh Ali Hasan <1933->
Pubbl/distr/stampa New York, : Wiley, c1995
Descrizione fisica 1 online resource (703 p.)
Disciplina 515.35
621.38131
Altri autori (Persone) BalachandranBalakumar
Collana Wiley series in nonlinear science
Soggetto topico Dynamics
Nonlinear theories
ISBN 1-282-01051-4
9786612010514
3-527-61754-X
3-527-61755-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto APPLIED NONLINEAR DYNAMICS; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 DISCRETE-TIME SYSTEMS; 1.2 CONTINUOUS-TIME SYSTEMS; 1.2.1 Nonautonomous Systems; 1.2.2 Autonomous Systems; 1.2.3 Phase Portraits and Flows; 1.3 ATTRACTING SETS; 1.4 CONCEPTS OF STABILITY; 1.4.1 Lyapunov Stability; 1.4.2 Asymptotic Stability; 1.4.3 Poincaré Stability; 1.4.4 Lagrange Stability (Bounded Stability); 1.4.5 Stability Through Lyapunov Function; 1.5 ATTRACTORS; 1.6 COMMENTS; 1.7 EXERCISES; 2 EQUILIBRIUM SOLUTIONS; 2.1 CONTINUOUS-TIME SYSTEMS; 2.1.1 Linearization Near an Equilibrium Solution
2.1.2 Classification and Stability of Equilibrium Solutions2.1.3 Eigenspaces and Invariant Manifolds; 2.1.4 Analytical Construction of Stable and Unstable Manifolds; 2.2 FIXED POINTS OF MAPS; 2.3 BIFURCATIONS OF CONTINUOUS SYSTEMS; 2.3.1 Local Bifurcations of Fixed Points; 2.3.2 Normal Forms for Bifurcations; 2.3.3 Bifurcation Diagrams and Sets; 2.3.4 Center Manifold Reduction; 2.3.5 The Lyapunov-Schmidt Method; 2.3.6 The Method of Multiple Scales; 2.3.7 Structural Stability; 2.3.8 Stability of Bifurcations to Perturbations; 2.3.9 Codimension of a Bifurcation; 2.3.10 Global Bifurcations
2.4 BIFURCATIONS OF MAPS2.5 EXERCISES; 3 PERIODIC SOLUTIONS; 3.1 PERIODIC SOLUTIONS; 3.1.1 Autonomous Systems; 3.1.2 Nonautonomous Systems; 3.1.3 Comments; 3.2 FLOQUET THEORY; 3.2.1 Autonomous Systems; 3.2.2 Nonautonomous Systems; 3.2.3 Comments on the Monodromy Matrix; 3.2.4 Manifolds of a Periodic Solution; 3.3 POINCARÉ MAPS; 3.3.1 Nonautonomous Systems; 3.3.2 Autonomous Systems; 3.4 BIFURCATIONS; 3.4.1 Symmetry-Breaking Bifurcation; 3.4.2 Cyclic-Fold Bifurcation; 3.4.3 Period-Doubling or Flip Bifurcation; 3.4.4 Transcritical Bifurcation; 3.4.5 Secondary Hopf or Neimark Bifurcation
3.5 ANALYTICAL CONSTRUCTIONS3.5.1 Method of Multiple Scales; 3.5.2 Center Manifold Reduction; 3.5.3 General Case; 3.6 EXERCISES; 4 QUASIPERIODIC SOLUTIONS; 4.1 POINCARÉ MAPS; 4.1.1 Winding Time and Rotation Number; 4.1.2 Second-Order Poincaré Map; 4.1.3 Comments; 4.2 CIRCLE MAP; 4.3 CONSTRUCTIONS; 4.3.1 Method of Multiple Scales; 4.3.2 Spectral Balance Method; 4.3.3 Poincaré Map Method; 4.4 STABILITY; 4.5 SYNCHRONIZATION; 4.6 EXERCISES; 5 CHAOS; 5.1 MAPS; 5.2 CONTINUOUS-TIME SYSTEMS; 5.3 PERIOD-DOUBLING SCENARIO; 5.4 INTERMITTENCY MECHANISMS; 5.4.1 Type I Intermittency
5.4.2 Type III Intermittency5.4.3 Type II Intermittency; 5.5 QUASIPERIODIC ROUTES; 5.5.1 Ruelle-Takens Scenario; 5.5.2 Torus Breakdown; 5.5.3 Torus Doubling; 5.6 CRISES; 5.7 MELNIKOV THEORY; 5.7.1 Homoclinic Tangles; 5.7.2 Heteroclinic Tangles; 5.7.3 Numerical Prediction of Manifold Intersections; 5.7.4 Analytical Prediction of Manifold Intersections; 5.7.5 Application of Melnikov's Method; 5.7.6 Comments; 5.8 BIFURCATIONS OF HOMOCLINIC ORBITS; 5.8.1 Planar Systems; 5.8.2 Orbits Homoclinic to a Saddle; 5.8.3 Orbits Homoclinic to a Saddle Focus; 5.8.4 Comments; 5.9 EXERCISES
6 NUMERICAL METHODS
Record Nr. UNINA-9910876607503321
Nayfeh Ali Hasan <1933->  
New York, : Wiley, c1995
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The method of normal forms [[electronic resource] /] / Ali Hasan Nayfeh
The method of normal forms [[electronic resource] /] / Ali Hasan Nayfeh
Autore Nayfeh Ali Hasan <1933->
Edizione [2nd, updated and enl. ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (343 p.)
Disciplina 512.9/44
512.944
Soggetto topico Normal forms (Mathematics)
Differential equations - Numerical solutions
Soggetto genere / forma Electronic books.
ISBN 3-527-63577-7
1-283-92749-7
3-527-63578-5
3-527-63580-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The Method of Normal Forms; Contents; Preface; Introduction; 1 SDOF Autonomous Systems; 1.1 Introduction; 1.2 Duffing Equation; 1.3 Rayleigh Equation; 1.4 Duffing-Rayleigh-van der Pol Equation; 1.5 An Oscillator with Quadratic and Cubic Nonlinearities; 1.5.1 Successive Transformations; 1.5.2 The Method of Multiple Scales; 1.5.3 A Single Transformation; 1.6 A General System with Quadratic and Cubic Nonlinearities; 1.7 The van der Pol Oscillator; 1.7.1 The Method of Normal Forms; 1.7.2 The Method of Multiple Scales; 1.8 Exercises; 2 Systems of First-Order Equations; 2.1 Introduction
2.2 A Two-Dimensional System with Diagonal Linear Part2.3 A Two-Dimensional System with a Nonsemisimple Linear Form; 2.4 An n-Dimensional System with Diagonal Linear Part; 2.5 A Two-Dimensional System with Purely Imaginary Eigenvalues; 2.5.1 The Method of Normal Forms; 2.5.2 The Method of Multiple Scales; 2.6 A Two-Dimensional System with Zero Eigenvalues; 2.7 A Three-Dimensional System with Zeroand Two Purely Imaginary Eigenvalues; 2.8 The Mathieu Equation; 2.9 Exercises; 3 Maps; 3.1 Linear Maps; 3.1.1 Case of Distinct Eigenvalues; 3.1.2 Case of Repeated Eigenvalues; 3.2 Nonlinear Maps
3.3 Center-Manifold Reduction3.4 Local Bifurcations; 3.4.1 Fold or Tangent or Saddle-Node Bifurcation; 3.4.2 Transcritical Bifurcation; 3.4.3 Pitchfork Bifurcation; 3.4.4 Flip or Period-Doubling Bifurcation; 3.4.5 Hopf or Neimark-Sacker Bifurcation; 3.5 Exercises; 4 Bifurcations of Continuous Systems; 4.1 Linear Systems; 4.1.1 Case of Distinct Eigenvalues; 4.1.2 Case of Repeated Eigenvalues; 4.2 Fixed Points of Nonlinear Systems; 4.2.1 Stability of Fixed Points; 4.2.2 Classification of Fixed Points; 4.2.3 Hartman-Grobman and Shoshitaishvili Theorems; 4.3 Center-Manifold Reduction
4.4 Local Bifurcations of Fixed Points4.4.1 Saddle-Node Bifurcation; 4.4.2 Nonbifurcation Point; 4.4.3 Transcritical Bifurcation; 4.4.4 Pitchfork Bifurcation; 4.4.5 Hopf Bifurcations; 4.5 Normal Forms of Static Bifurcations; 4.5.1 The Method of Multiple Scales; 4.5.2 Center-Manifold Reduction; 4.5.3 A Projection Method; 4.6 Normal Form of Hopf Bifurcation; 4.6.1 The Method of Multiple Scales; 4.6.2 Center-Manifold Reduction; 4.6.3 Projection Method; 4.7 Exercises; 5 Forced Oscillations of the Duffing Oscillator; 5.1 Primary Resonance; 5.2 Subharmonic Resonance of Order One-Third
5.3 Superharmonic Resonance of Order Three5.4 An Alternate Approach; 5.4.1 Subharmonic Case; 5.4.2 Superharmonic Case; 5.5 Exercises; 6 Forced Oscillations of SDOF Systems; 6.1 Introduction; 6.2 Primary Resonance; 6.3 Subharmonic Resonance of Order One-Half; 6.4 Superharmonic Resonance of Order Two; 6.5 Subharmonic Resonance of Order One-Third; 7 Parametrically Excited Systems; 7.1 The Mathieu Equation; 7.1.1 Fundamental Parametric Resonance; 7.1.2 Principal Parametric Resonance; 7.2 Multiple-Degree-of-Freedom Systems; 7.2.1 The Case of Near 2+1; 7.2.2 The Case of Near 2-1
7.2.3 The Case of Near 2+1 and 3-2
Record Nr. UNINA-9910130959903321
Nayfeh Ali Hasan <1933->  
Weinheim, Germany, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The method of normal forms [[electronic resource] /] / Ali Hasan Nayfeh
The method of normal forms [[electronic resource] /] / Ali Hasan Nayfeh
Autore Nayfeh Ali Hasan <1933->
Edizione [2nd, updated and enl. ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (343 p.)
Disciplina 512.9/44
512.944
Soggetto topico Normal forms (Mathematics)
Differential equations - Numerical solutions
ISBN 3-527-63577-7
1-283-92749-7
3-527-63578-5
3-527-63580-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The Method of Normal Forms; Contents; Preface; Introduction; 1 SDOF Autonomous Systems; 1.1 Introduction; 1.2 Duffing Equation; 1.3 Rayleigh Equation; 1.4 Duffing-Rayleigh-van der Pol Equation; 1.5 An Oscillator with Quadratic and Cubic Nonlinearities; 1.5.1 Successive Transformations; 1.5.2 The Method of Multiple Scales; 1.5.3 A Single Transformation; 1.6 A General System with Quadratic and Cubic Nonlinearities; 1.7 The van der Pol Oscillator; 1.7.1 The Method of Normal Forms; 1.7.2 The Method of Multiple Scales; 1.8 Exercises; 2 Systems of First-Order Equations; 2.1 Introduction
2.2 A Two-Dimensional System with Diagonal Linear Part2.3 A Two-Dimensional System with a Nonsemisimple Linear Form; 2.4 An n-Dimensional System with Diagonal Linear Part; 2.5 A Two-Dimensional System with Purely Imaginary Eigenvalues; 2.5.1 The Method of Normal Forms; 2.5.2 The Method of Multiple Scales; 2.6 A Two-Dimensional System with Zero Eigenvalues; 2.7 A Three-Dimensional System with Zeroand Two Purely Imaginary Eigenvalues; 2.8 The Mathieu Equation; 2.9 Exercises; 3 Maps; 3.1 Linear Maps; 3.1.1 Case of Distinct Eigenvalues; 3.1.2 Case of Repeated Eigenvalues; 3.2 Nonlinear Maps
3.3 Center-Manifold Reduction3.4 Local Bifurcations; 3.4.1 Fold or Tangent or Saddle-Node Bifurcation; 3.4.2 Transcritical Bifurcation; 3.4.3 Pitchfork Bifurcation; 3.4.4 Flip or Period-Doubling Bifurcation; 3.4.5 Hopf or Neimark-Sacker Bifurcation; 3.5 Exercises; 4 Bifurcations of Continuous Systems; 4.1 Linear Systems; 4.1.1 Case of Distinct Eigenvalues; 4.1.2 Case of Repeated Eigenvalues; 4.2 Fixed Points of Nonlinear Systems; 4.2.1 Stability of Fixed Points; 4.2.2 Classification of Fixed Points; 4.2.3 Hartman-Grobman and Shoshitaishvili Theorems; 4.3 Center-Manifold Reduction
4.4 Local Bifurcations of Fixed Points4.4.1 Saddle-Node Bifurcation; 4.4.2 Nonbifurcation Point; 4.4.3 Transcritical Bifurcation; 4.4.4 Pitchfork Bifurcation; 4.4.5 Hopf Bifurcations; 4.5 Normal Forms of Static Bifurcations; 4.5.1 The Method of Multiple Scales; 4.5.2 Center-Manifold Reduction; 4.5.3 A Projection Method; 4.6 Normal Form of Hopf Bifurcation; 4.6.1 The Method of Multiple Scales; 4.6.2 Center-Manifold Reduction; 4.6.3 Projection Method; 4.7 Exercises; 5 Forced Oscillations of the Duffing Oscillator; 5.1 Primary Resonance; 5.2 Subharmonic Resonance of Order One-Third
5.3 Superharmonic Resonance of Order Three5.4 An Alternate Approach; 5.4.1 Subharmonic Case; 5.4.2 Superharmonic Case; 5.5 Exercises; 6 Forced Oscillations of SDOF Systems; 6.1 Introduction; 6.2 Primary Resonance; 6.3 Subharmonic Resonance of Order One-Half; 6.4 Superharmonic Resonance of Order Two; 6.5 Subharmonic Resonance of Order One-Third; 7 Parametrically Excited Systems; 7.1 The Mathieu Equation; 7.1.1 Fundamental Parametric Resonance; 7.1.2 Principal Parametric Resonance; 7.2 Multiple-Degree-of-Freedom Systems; 7.2.1 The Case of Near 2+1; 7.2.2 The Case of Near 2-1
7.2.3 The Case of Near 2+1 and 3-2
Record Nr. UNINA-9910829822303321
Nayfeh Ali Hasan <1933->  
Weinheim, Germany, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The method of normal forms / / Ali Hasan Nayfeh
The method of normal forms / / Ali Hasan Nayfeh
Autore Nayfeh Ali Hasan <1933->
Edizione [2nd, updated and enl. ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (343 p.)
Disciplina 512.944
Soggetto topico Normal forms (Mathematics)
Differential equations - Numerical solutions
ISBN 3-527-63577-7
1-283-92749-7
3-527-63578-5
3-527-63580-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The Method of Normal Forms; Contents; Preface; Introduction; 1 SDOF Autonomous Systems; 1.1 Introduction; 1.2 Duffing Equation; 1.3 Rayleigh Equation; 1.4 Duffing-Rayleigh-van der Pol Equation; 1.5 An Oscillator with Quadratic and Cubic Nonlinearities; 1.5.1 Successive Transformations; 1.5.2 The Method of Multiple Scales; 1.5.3 A Single Transformation; 1.6 A General System with Quadratic and Cubic Nonlinearities; 1.7 The van der Pol Oscillator; 1.7.1 The Method of Normal Forms; 1.7.2 The Method of Multiple Scales; 1.8 Exercises; 2 Systems of First-Order Equations; 2.1 Introduction
2.2 A Two-Dimensional System with Diagonal Linear Part2.3 A Two-Dimensional System with a Nonsemisimple Linear Form; 2.4 An n-Dimensional System with Diagonal Linear Part; 2.5 A Two-Dimensional System with Purely Imaginary Eigenvalues; 2.5.1 The Method of Normal Forms; 2.5.2 The Method of Multiple Scales; 2.6 A Two-Dimensional System with Zero Eigenvalues; 2.7 A Three-Dimensional System with Zeroand Two Purely Imaginary Eigenvalues; 2.8 The Mathieu Equation; 2.9 Exercises; 3 Maps; 3.1 Linear Maps; 3.1.1 Case of Distinct Eigenvalues; 3.1.2 Case of Repeated Eigenvalues; 3.2 Nonlinear Maps
3.3 Center-Manifold Reduction3.4 Local Bifurcations; 3.4.1 Fold or Tangent or Saddle-Node Bifurcation; 3.4.2 Transcritical Bifurcation; 3.4.3 Pitchfork Bifurcation; 3.4.4 Flip or Period-Doubling Bifurcation; 3.4.5 Hopf or Neimark-Sacker Bifurcation; 3.5 Exercises; 4 Bifurcations of Continuous Systems; 4.1 Linear Systems; 4.1.1 Case of Distinct Eigenvalues; 4.1.2 Case of Repeated Eigenvalues; 4.2 Fixed Points of Nonlinear Systems; 4.2.1 Stability of Fixed Points; 4.2.2 Classification of Fixed Points; 4.2.3 Hartman-Grobman and Shoshitaishvili Theorems; 4.3 Center-Manifold Reduction
4.4 Local Bifurcations of Fixed Points4.4.1 Saddle-Node Bifurcation; 4.4.2 Nonbifurcation Point; 4.4.3 Transcritical Bifurcation; 4.4.4 Pitchfork Bifurcation; 4.4.5 Hopf Bifurcations; 4.5 Normal Forms of Static Bifurcations; 4.5.1 The Method of Multiple Scales; 4.5.2 Center-Manifold Reduction; 4.5.3 A Projection Method; 4.6 Normal Form of Hopf Bifurcation; 4.6.1 The Method of Multiple Scales; 4.6.2 Center-Manifold Reduction; 4.6.3 Projection Method; 4.7 Exercises; 5 Forced Oscillations of the Duffing Oscillator; 5.1 Primary Resonance; 5.2 Subharmonic Resonance of Order One-Third
5.3 Superharmonic Resonance of Order Three5.4 An Alternate Approach; 5.4.1 Subharmonic Case; 5.4.2 Superharmonic Case; 5.5 Exercises; 6 Forced Oscillations of SDOF Systems; 6.1 Introduction; 6.2 Primary Resonance; 6.3 Subharmonic Resonance of Order One-Half; 6.4 Superharmonic Resonance of Order Two; 6.5 Subharmonic Resonance of Order One-Third; 7 Parametrically Excited Systems; 7.1 The Mathieu Equation; 7.1.1 Fundamental Parametric Resonance; 7.1.2 Principal Parametric Resonance; 7.2 Multiple-Degree-of-Freedom Systems; 7.2.1 The Case of Near 2+1; 7.2.2 The Case of Near 2-1
7.2.3 The Case of Near 2+1 and 3-2
Record Nr. UNINA-9910876651103321
Nayfeh Ali Hasan <1933->  
Weinheim, Germany, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui