Bioelectrochemical interface engineering / / edited by Dr. R. Navanietha Krishnaraj, Dr. Rajesh K. Sani |
Autore | Krishnaraj R. Navanietha |
Pubbl/distr/stampa | Hoboken, New Jersey ; ; Chichester, West Sussex, England : , : Wiley, , [2020] |
Descrizione fisica | 1 online resource (559 pages) |
Disciplina | 572.437 |
Soggetto topico |
Bioelectrochemistry
Bioengineering Chemical engineering |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-61110-5
1-119-53842-4 1-119-53856-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910555087203321 |
Krishnaraj R. Navanietha | ||
Hoboken, New Jersey ; ; Chichester, West Sussex, England : , : Wiley, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Bioelectrochemical interface engineering / / edited by Dr. R. Navanietha Krishnaraj, Dr. Rajesh K. Sani |
Autore | Krishnaraj R. Navanietha |
Pubbl/distr/stampa | Hoboken, New Jersey ; ; Chichester, West Sussex, England : , : Wiley, , [2020] |
Descrizione fisica | 1 online resource (559 pages) |
Disciplina | 572.437 |
Soggetto topico |
Bioelectrochemistry
Bioengineering Chemical engineering |
ISBN |
1-119-61110-5
1-119-53842-4 1-119-53856-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910677115903321 |
Krishnaraj R. Navanietha | ||
Hoboken, New Jersey ; ; Chichester, West Sussex, England : , : Wiley, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Bioelectrochemical interface engineering / / edited by Dr. R. Navanietha Krishnaraj, Dr. Rajesh K. Sani |
Autore | Krishnaraj R. Navanietha |
Pubbl/distr/stampa | Hoboken, New Jersey ; ; Chichester, West Sussex, England : , : Wiley, , [2020] |
Descrizione fisica | 1 online resource (559 pages) |
Disciplina | 572.437 |
Soggetto topico |
Bioelectrochemistry
Bioengineering Chemical engineering |
ISBN |
1-119-61110-5
1-119-53842-4 1-119-53856-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910826026603321 |
Krishnaraj R. Navanietha | ||
Hoboken, New Jersey ; ; Chichester, West Sussex, England : , : Wiley, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Bioenergy : opportunities and challenges / / edited by R. Navanietha Krishnaraj, Jong-Sung Yu |
Pubbl/distr/stampa | Toronto : , : Apple Academic Press, , 2016 |
Descrizione fisica | 1 online resource (371 p.) |
Disciplina | 662/.88 |
Soggetto topico |
Biomass energy
Microbial fuel cells Biodiesel fuels Lignocellulose |
ISBN |
0-429-15705-3
1-4987-2205-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; ABOUT THE EDITORS; CONTENTS; LIST OF CONTRIBUTORS; LIST OF ABBREVIATIONS; PREFACE; PART 1: BIOHYDROGEN PRODUCTION; CHAPTER 1: THERMOPHILIC BIOHYDROGEN PRODUCTION: CHALLENGES AT THE INDUSTRIAL SCALE; CHAPTER 2: BIO-HYDROGEN PRODUCTION: CURRENT TRENDS AND FUTURE PROSPECTS; PART 2: MICROBIAL FUEL CELLS; CHAPTER 3: MICROBIAL FUEL CELLS: A PROMISING ALTERNATIVE ENERGY SOURCE; CHAPTER 4: CHALLENGES TO AND OPPORTUNITIES IN MICROBIAL FUEL CELLS; CHAPTER 5: SYSTEMS BIOLOGY APPROACHES FOR MICROBIAL FUEL CELL APPLICATIONS; PART 3: BIOETHANOL PRODUCTION
CHAPTER 6: POTENTIALS OF OSCILLATORIA ANNAE IN PRODUCING BIOETHANOL BY DEGRADATION OF SELECTED LIGNOCELLULOSICSCHAPTER 7: CHALLENGES IN HARNESSING THE POTENTIAL OF LIGNOCELLULOSIC BIOFUELS AND THE PROBABLE COMBATING STRATEGIES; PART 4: BIODIESEL PRODUCTION; CHAPTER 8: BIODIESEL: PRODUCTION,OPPORTUNITIES AND CHALLENGES; CHAPTER 9: AN OVERVIEW OF REACTOR DESIGNS FOR BIODIESEL PRODUCTION; CHAPTER 10: STUDIES ON THE EFFECT OF ANTIOXIDANTS ON THE LONG-TERM STORAGE STABILITYAND OXIDATION STABILITY OF PONGAMIA PINNATA AND JATROPHA CURCUS BIODIESEL CHAPTER 11: EFFECT OF FUNGAL BIOTIC STRESS ON PHYSIC NUT (JATROPHA CURCAS L.)PART 5: CATALYSIS FOR BIOFUELS; CHAPTER 12: A CHEMIST'S PERSPECTIVE ON BIOENERGY-OPPORTUNITIES AND CHALLENGES; Untitled |
Record Nr. | UNINA-9910797321903321 |
Toronto : , : Apple Academic Press, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Bioenergy : opportunities and challenges / / edited by R. Navanietha Krishnaraj, Jong-Sung Yu |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Toronto : , : Apple Academic Press, , 2016 |
Descrizione fisica | 1 online resource (371 p.) |
Disciplina | 662/.88 |
Soggetto topico |
Biomass energy
Microbial fuel cells Biodiesel fuels Lignocellulose |
ISBN |
0-429-15705-3
1-4987-2205-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; ABOUT THE EDITORS; CONTENTS; LIST OF CONTRIBUTORS; LIST OF ABBREVIATIONS; PREFACE; PART 1: BIOHYDROGEN PRODUCTION; CHAPTER 1: THERMOPHILIC BIOHYDROGEN PRODUCTION: CHALLENGES AT THE INDUSTRIAL SCALE; CHAPTER 2: BIO-HYDROGEN PRODUCTION: CURRENT TRENDS AND FUTURE PROSPECTS; PART 2: MICROBIAL FUEL CELLS; CHAPTER 3: MICROBIAL FUEL CELLS: A PROMISING ALTERNATIVE ENERGY SOURCE; CHAPTER 4: CHALLENGES TO AND OPPORTUNITIES IN MICROBIAL FUEL CELLS; CHAPTER 5: SYSTEMS BIOLOGY APPROACHES FOR MICROBIAL FUEL CELL APPLICATIONS; PART 3: BIOETHANOL PRODUCTION
CHAPTER 6: POTENTIALS OF OSCILLATORIA ANNAE IN PRODUCING BIOETHANOL BY DEGRADATION OF SELECTED LIGNOCELLULOSICSCHAPTER 7: CHALLENGES IN HARNESSING THE POTENTIAL OF LIGNOCELLULOSIC BIOFUELS AND THE PROBABLE COMBATING STRATEGIES; PART 4: BIODIESEL PRODUCTION; CHAPTER 8: BIODIESEL: PRODUCTION,OPPORTUNITIES AND CHALLENGES; CHAPTER 9: AN OVERVIEW OF REACTOR DESIGNS FOR BIODIESEL PRODUCTION; CHAPTER 10: STUDIES ON THE EFFECT OF ANTIOXIDANTS ON THE LONG-TERM STORAGE STABILITYAND OXIDATION STABILITY OF PONGAMIA PINNATA AND JATROPHA CURCUS BIODIESEL CHAPTER 11: EFFECT OF FUNGAL BIOTIC STRESS ON PHYSIC NUT (JATROPHA CURCAS L.)PART 5: CATALYSIS FOR BIOFUELS; CHAPTER 12: A CHEMIST'S PERSPECTIVE ON BIOENERGY-OPPORTUNITIES AND CHALLENGES; Untitled |
Record Nr. | UNINA-9910821795203321 |
Toronto : , : Apple Academic Press, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biomolecular engineering solutions for renewable specialty chemicals : microorganisms, products, and processes / / edited by R. Navanietha Krishnaraj, Rajesh K. Sani |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2022] |
Descrizione fisica | 1 online resource (482 pages) |
Disciplina | 660.62 |
Soggetto topico | Microbial biotechnology |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-77193-5
1-119-77195-1 1-119-77194-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910555034103321 |
Hoboken, New Jersey : , : Wiley, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biomolecular engineering solutions for renewable specialty chemicals : microorganisms, products, and processes / / edited by R. Navanietha Krishnaraj, Rajesh K. Sani |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2022] |
Descrizione fisica | 1 online resource (482 pages) |
Disciplina | 660.62 |
Soggetto topico | Microbial biotechnology |
ISBN |
1-119-77193-5
1-119-77195-1 1-119-77194-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910677721503321 |
Hoboken, New Jersey : , : Wiley, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Microbial interactions at nanobiotechnology interfaces : molecular mechanisms and applications / / edited by R. Navanietha Krishnaraj, Rajesh K. Sani |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] |
Descrizione fisica | 1 online resource (419 pages) |
Disciplina | 620.5 |
Soggetto topico | Microbiology |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-61717-0
1-119-61718-9 1-119-61720-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- List of Contributors -- Chapter 1 Shape- and Size-Dependent Antibacterial Activity of Nanomaterials -- Objectives -- 1.1 Introduction -- 1.2 Synthesis of Nanomaterials -- 1.3 Classification of NMs -- 1.3.1 Classification Based on Dimensions -- 1.3.2 Classification Based on Chemical Compositions -- 1.3.3 Classification Based on Origin -- 1.4 Application of NMs -- 1.4.1 Advanced Application of NMs as Antimicrobial Agents -- 1.5 Bacterial Resistance to Antibiotics -- 1.5.1 Mechanism of Antibiotic Resistance -- 1.6 Microbial Resistance: Role of NMs -- 1.6.1 Overcoming the Existing Antibiotic Resistance Mechanisms -- 1.7 Antibacterial Application of NMs -- 1.7.1 Nanometals -- 1.7.2 Metal Oxides -- 1.7.3 Carbonaceous NMs -- 1.7.4 Cationic Polymer NMs -- 1.8 Interaction of NMs with Bacteria -- 1.9 Antibacterial Mechanism of NMs -- 1.10 Factors Affecting the Antibacterial Activity of NMs -- 1.10.1 Size -- 1.10.2 Shape -- 1.10.3 Zeta Potential -- 1.10.4 Roughness -- 1.10.5 Synthesis Methods and Stabilizing Agents -- 1.10.6 Environmental Conditions -- 1.11 Influence of Size on the Antibacterial Activity and Mechanism of Action of Nanomaterials -- 1.12 Influence of Shape on the Antibacterial Activity and Mechanism of Action of Nanomaterials -- 1.13 Effects of Functionalization on the Antimicrobial Property of Nanomaterials -- 1.14 Conclusion and Future Perspectives -- Questions and Answers -- References -- Chapter 2 Size- and Shape-Selective Synthesis of DNA-Based Nanomaterials and Their Application in Surface-Enhanced Raman Scattering -- Objectives -- 2.1 Introduction -- 2.2 Mechanism of Surface-Enhanced Raman Scattering (SERS) -- 2.2.1 Significance of Nano-Bio Interfaces and Role of DNA in Enhancing SERS Activity.
2.3 Size- and Shape-Selective Synthesis of Metal NPs with DNA for SERS Studies -- 2.3.1 Metal NP Assemblies on DNA Using Photochemical Route for SERS Studies -- 2.3.2 Metal NP Assemblies on DNA Using Chemical Reduction Process as Aquasol for SERS Studies -- 2.3.3 Metal NP Assemblies on DNA Using Chemical Reduction as Organosol for SERS Studies -- 2.3.4 Metal NP Assemblies on DNA Prepared Using Microwave Heating for SERS Studies -- 2.3.5 Conclusions and Outcomes of DNA-Based Metal Nanostructures for SERS Studies -- Acknowledgements -- References -- Academic Profile -- Chapter 3 Surface Modification Strategies to Control the Nanomaterial-Microbe Interplay -- Objectives -- 3.1 Introduction -- 3.2 Factors Influencing NM-Microbe Cross talk -- 3.2.1 Surface Features of Microbes -- 3.2.2 Physicochemical Properties of NMs -- 3.3 Surface Functionalization -- 3.3.1 Techniques Used for Surface Functionalization -- 3.3.2 Surface Functionalization Strategies -- 3.4 Characterization of NM-Microbe Interactions -- 3.4.1 Microbe Parameters -- 3.4.2 NM Parameters -- 3.5 Toxicity of the Surface-Modified NMs -- 3.6 Challenges and Future Perspectives -- Questions and Answers -- Take Home Message -- References -- Chapter 4 Surface Functionalization of Nanoparticles for Stability in Biological Systems -- Objectives -- 4.1 Introduction -- 4.2 Major Processes Affecting NP Stability in Biological Media -- 4.2.1 Aggregation -- 4.2.2 Nanoparticle Design and Properties -- 4.2.3 Hydrophobicity/Hydrophilicity Effects -- 4.2.4 Effect of Protein Corona -- 4.2.5 External Factors -- 4.3 Measures to Enhance NP Stability in Biological Systems -- 4.3.1 Stabilization Against Aggregation -- 4.3.2 Ligand Exchange -- 4.3.3 Coating with Additional Layers -- 4.3.4 Subsiding the Nonspecific Protein Interaction -- 4.3.5 Nanoparticle Design. 4.3.6 Influence of NM Physicochemical Properties on Microbe-NM Interaction -- 4.4 Conclusion and Future Perspectives -- 4.5 Summary -- Questions and Answers -- References -- Chapter 5 Molecular Mechanisms Behind Nano-Cancer Therapeutics -- Objectives -- 5.1 Nanotechnology at Nano-Bio Interfaces -- 5.2 Armory of Nanomedicine at Nano-Bio Interfaces -- 5.3 Nanoparticle Edge in Modulating Biological Process -- 5.4 Intracellular Uptake and Trafficking of Nanoparticle -- 5.5 Challenges in Clinical Applications -- 5.6 Conclusion -- Take Home Message -- Questions and Answers -- Acknowledgements -- References -- Chapter 6 Protein Nanoparticle Interactions and Factors Influencing These Interactions -- Objectives -- 6.1 Introduction -- 6.2 Types and Biomedical Application of Nanoparticles -- 6.3 Methods and Mechanisms of Nanomaterials Synthesis -- 6.4 Routes of Entry of Nanoparticles into Biological System -- 6.5 Rationale for Studying Nanoparticles-Protein Interactions -- 6.6 Formation of Protein Corona -- 6.7 Nanoparticles-Induced Structural Changes in Proteins -- 6.7.1 Reversible -- 6.7.2 Irreversible -- 6.8 Factors Influencing Corona Formation -- 6.8.1 Properties of Nanoparticles -- 6.8.2 Properties of Protein -- 6.8.3 Effect of Surrounding Environment -- 6.9 Interaction of Nanoparticles with Cells and Their Uptake -- 6.10 Pleiotrophic Effect of Nanoparticles -- 6.11 Analytical Methods to Study Nanoparticles-Protein Interaction -- 6.11.1 Spectral Properties -- 6.11.2 Surface Plasmon Resonance -- 6.11.3 Cellular Uptake of Nanoparticles-Protein -- 6.11.4 Binding Affinity -- References -- Chapter 7 Interaction Effects of Nanoparticles with Microorganisms Employed in the Remediation of Nitrogen-Rich Wastewater -- Objectives -- 7.1 Introduction -- 7.2 Bacterial Nitrification Process -- 7.2.1 Effect of NPs on Functional Gene Abundance and Transcriptional Response. 7.2.2 Effect of NPs on Enzyme Activity -- 7.2.3 Effect on Cellular Morphology -- 7.3 Effect of NPs on Denitrifying Bacteria -- 7.3.1 Effect on Functional Gene Abundance and Transcriptional Response -- 7.3.2 Enzymatic Response -- 7.4 Impact of Nanoparticles on Nitrogen Removal -- 7.5 Conclusion -- Take Home Message -- Questions and Answers -- Acknowledgements -- References -- Chapter 8 Silver-Based Nanoparticles for Antibacterial Activity: Recent Development and Mechanistic Approaches -- Objectives -- 8.1 Introduction -- 8.2 Historical Background of Silver -- 8.3 Synthesis Procedures of Silver Nanoparticles -- 8.3.1 Chemical Synthesis -- 8.3.2 Physical Methods -- 8.3.3 Biological Methods -- 8.4 Biological Application of Silver Nanoparticles -- 8.5 Bacterial Infection and Antibiotic Resistance -- 8.6 Nanosilver for Antibacterial Therapy -- 8.6.1 Metallic Silver Nanoparticles -- 8.6.2 Biosynthesized Silver Nanoparticles -- 8.6.3 Silver Nanocomposites -- 8.6.4 Silver Nanoscaffolds -- 8.7 Influence of Size and Shape of Silver Nanoparticles as Antibacterial Agents -- 8.8 Nanosilver and Its Mechanism of Action for Antibacterial Therapy -- 8.9 Application of Silver Nanoparticle in Commercial Products -- 8.9.1 Silver Nanoparticles in Wound Dressing Materials and Devices -- 8.9.2 Silver Nanoparticles in Soaps and Detergents -- 8.9.3 Silver Nanoparticles in Fabrics -- 8.9.4 Silver Nanoparticles in Cosmetics -- 8.9.5 Silver Nanoparticles in Food Packaging -- 8.9.6 Silver Nanoparticles in Paints -- 8.10 Toxicity of Silver Nanoparticles -- 8.11 Future Prospective and Challenges -- 8.12 Conclusion -- Take Home Message -- Questions and Answers -- Acknowledgments -- References -- Chapter 9 Microbial Gold Nanoparticles and Their Biomedical Applications -- Objectives -- 9.1 Introduction -- 9.2 Microbial Gold Nanoparticles Synthesis. 9.2.1 Bacteria-Mediated Gold Nanoparticles -- 9.2.2 Algae-Mediated Gold Nanoparticles -- 9.2.3 Fungi-Mediated Gold Nanoparticles -- 9.2.4 Yeast-Mediated Gold Nanoparticles -- 9.2.5 Mechanism Involved in Microbial Nanoparticles Synthesis -- 9.3 Applications of Microbial Gold Nanoparticles -- 9.3.1 Biosensing -- 9.3.2 Antibacterial Activity of Au NPs -- 9.3.3 Anticancer Activity of Microbial Gold Nanoparticles -- 9.4 Conclusion -- Acknowledgements -- Take Home Message -- Questions and Answers -- References -- Chapter 10 Nano-Bio Interactions and Their Practical Implications in Agriculture -- 10.1 Introduction -- 10.1.1 Agriculturally Beneficial Soil Microorganisms -- 10.2 Engineered Nanomaterials and Agriculture -- 10.2.1 Pathways for ENM to Soil -- 10.2.2 Fate of ENMs in Soil -- 10.2.3 Chemical Interactions of ENM in Soil -- 10.2.4 Mechanisms Controlling Heteroaggregation -- 10.2.5 Mobility of Colloids and ENMs in Soil -- 10.2.6 Nanoagriculture -- 10.2.7 Nanopesticides -- 10.2.8 ENMs and Agriculturally Beneficial Microorganisms -- 10.3 Summary -- References -- Chapter 11 Biogeochemical Interactions of Bioreduced Uranium Nanoparticles -- 11.1 Introduction -- 11.2 Coupled Biogeochemical Mechanisms and Interactions of U in the Subsurface -- 11.3 Biogenic Uraninite Precipitation and Its Nanoparticulate Forms -- 11.4 Re-oxidation and Stability of Bioreduced Uranium -- 11.5 Summary and Conclusions -- Questions and Answers -- References -- Chapter 12 Characterization and Quantification of Mobile Bioreduced Uranium Phases -- 12.1 Introduction -- 12.2 Characterization of Biogenic U(IV) -- 12.3 Quantification of Mobile Bioreduced U(IV) Nanoparticles -- 12.4 Summary and Conclusions -- Questions and Answers -- References -- Index -- EULA. |
Record Nr. | UNINA-9910555274403321 |
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Microbial interactions at nanobiotechnology interfaces : molecular mechanisms and applications / / edited by R. Navanietha Krishnaraj, Rajesh K. Sani |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] |
Descrizione fisica | 1 online resource (419 pages) |
Disciplina | 620.5 |
Soggetto topico | Microbiology |
ISBN |
1-119-61717-0
1-119-61718-9 1-119-61720-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- List of Contributors -- Chapter 1 Shape- and Size-Dependent Antibacterial Activity of Nanomaterials -- Objectives -- 1.1 Introduction -- 1.2 Synthesis of Nanomaterials -- 1.3 Classification of NMs -- 1.3.1 Classification Based on Dimensions -- 1.3.2 Classification Based on Chemical Compositions -- 1.3.3 Classification Based on Origin -- 1.4 Application of NMs -- 1.4.1 Advanced Application of NMs as Antimicrobial Agents -- 1.5 Bacterial Resistance to Antibiotics -- 1.5.1 Mechanism of Antibiotic Resistance -- 1.6 Microbial Resistance: Role of NMs -- 1.6.1 Overcoming the Existing Antibiotic Resistance Mechanisms -- 1.7 Antibacterial Application of NMs -- 1.7.1 Nanometals -- 1.7.2 Metal Oxides -- 1.7.3 Carbonaceous NMs -- 1.7.4 Cationic Polymer NMs -- 1.8 Interaction of NMs with Bacteria -- 1.9 Antibacterial Mechanism of NMs -- 1.10 Factors Affecting the Antibacterial Activity of NMs -- 1.10.1 Size -- 1.10.2 Shape -- 1.10.3 Zeta Potential -- 1.10.4 Roughness -- 1.10.5 Synthesis Methods and Stabilizing Agents -- 1.10.6 Environmental Conditions -- 1.11 Influence of Size on the Antibacterial Activity and Mechanism of Action of Nanomaterials -- 1.12 Influence of Shape on the Antibacterial Activity and Mechanism of Action of Nanomaterials -- 1.13 Effects of Functionalization on the Antimicrobial Property of Nanomaterials -- 1.14 Conclusion and Future Perspectives -- Questions and Answers -- References -- Chapter 2 Size- and Shape-Selective Synthesis of DNA-Based Nanomaterials and Their Application in Surface-Enhanced Raman Scattering -- Objectives -- 2.1 Introduction -- 2.2 Mechanism of Surface-Enhanced Raman Scattering (SERS) -- 2.2.1 Significance of Nano-Bio Interfaces and Role of DNA in Enhancing SERS Activity.
2.3 Size- and Shape-Selective Synthesis of Metal NPs with DNA for SERS Studies -- 2.3.1 Metal NP Assemblies on DNA Using Photochemical Route for SERS Studies -- 2.3.2 Metal NP Assemblies on DNA Using Chemical Reduction Process as Aquasol for SERS Studies -- 2.3.3 Metal NP Assemblies on DNA Using Chemical Reduction as Organosol for SERS Studies -- 2.3.4 Metal NP Assemblies on DNA Prepared Using Microwave Heating for SERS Studies -- 2.3.5 Conclusions and Outcomes of DNA-Based Metal Nanostructures for SERS Studies -- Acknowledgements -- References -- Academic Profile -- Chapter 3 Surface Modification Strategies to Control the Nanomaterial-Microbe Interplay -- Objectives -- 3.1 Introduction -- 3.2 Factors Influencing NM-Microbe Cross talk -- 3.2.1 Surface Features of Microbes -- 3.2.2 Physicochemical Properties of NMs -- 3.3 Surface Functionalization -- 3.3.1 Techniques Used for Surface Functionalization -- 3.3.2 Surface Functionalization Strategies -- 3.4 Characterization of NM-Microbe Interactions -- 3.4.1 Microbe Parameters -- 3.4.2 NM Parameters -- 3.5 Toxicity of the Surface-Modified NMs -- 3.6 Challenges and Future Perspectives -- Questions and Answers -- Take Home Message -- References -- Chapter 4 Surface Functionalization of Nanoparticles for Stability in Biological Systems -- Objectives -- 4.1 Introduction -- 4.2 Major Processes Affecting NP Stability in Biological Media -- 4.2.1 Aggregation -- 4.2.2 Nanoparticle Design and Properties -- 4.2.3 Hydrophobicity/Hydrophilicity Effects -- 4.2.4 Effect of Protein Corona -- 4.2.5 External Factors -- 4.3 Measures to Enhance NP Stability in Biological Systems -- 4.3.1 Stabilization Against Aggregation -- 4.3.2 Ligand Exchange -- 4.3.3 Coating with Additional Layers -- 4.3.4 Subsiding the Nonspecific Protein Interaction -- 4.3.5 Nanoparticle Design. 4.3.6 Influence of NM Physicochemical Properties on Microbe-NM Interaction -- 4.4 Conclusion and Future Perspectives -- 4.5 Summary -- Questions and Answers -- References -- Chapter 5 Molecular Mechanisms Behind Nano-Cancer Therapeutics -- Objectives -- 5.1 Nanotechnology at Nano-Bio Interfaces -- 5.2 Armory of Nanomedicine at Nano-Bio Interfaces -- 5.3 Nanoparticle Edge in Modulating Biological Process -- 5.4 Intracellular Uptake and Trafficking of Nanoparticle -- 5.5 Challenges in Clinical Applications -- 5.6 Conclusion -- Take Home Message -- Questions and Answers -- Acknowledgements -- References -- Chapter 6 Protein Nanoparticle Interactions and Factors Influencing These Interactions -- Objectives -- 6.1 Introduction -- 6.2 Types and Biomedical Application of Nanoparticles -- 6.3 Methods and Mechanisms of Nanomaterials Synthesis -- 6.4 Routes of Entry of Nanoparticles into Biological System -- 6.5 Rationale for Studying Nanoparticles-Protein Interactions -- 6.6 Formation of Protein Corona -- 6.7 Nanoparticles-Induced Structural Changes in Proteins -- 6.7.1 Reversible -- 6.7.2 Irreversible -- 6.8 Factors Influencing Corona Formation -- 6.8.1 Properties of Nanoparticles -- 6.8.2 Properties of Protein -- 6.8.3 Effect of Surrounding Environment -- 6.9 Interaction of Nanoparticles with Cells and Their Uptake -- 6.10 Pleiotrophic Effect of Nanoparticles -- 6.11 Analytical Methods to Study Nanoparticles-Protein Interaction -- 6.11.1 Spectral Properties -- 6.11.2 Surface Plasmon Resonance -- 6.11.3 Cellular Uptake of Nanoparticles-Protein -- 6.11.4 Binding Affinity -- References -- Chapter 7 Interaction Effects of Nanoparticles with Microorganisms Employed in the Remediation of Nitrogen-Rich Wastewater -- Objectives -- 7.1 Introduction -- 7.2 Bacterial Nitrification Process -- 7.2.1 Effect of NPs on Functional Gene Abundance and Transcriptional Response. 7.2.2 Effect of NPs on Enzyme Activity -- 7.2.3 Effect on Cellular Morphology -- 7.3 Effect of NPs on Denitrifying Bacteria -- 7.3.1 Effect on Functional Gene Abundance and Transcriptional Response -- 7.3.2 Enzymatic Response -- 7.4 Impact of Nanoparticles on Nitrogen Removal -- 7.5 Conclusion -- Take Home Message -- Questions and Answers -- Acknowledgements -- References -- Chapter 8 Silver-Based Nanoparticles for Antibacterial Activity: Recent Development and Mechanistic Approaches -- Objectives -- 8.1 Introduction -- 8.2 Historical Background of Silver -- 8.3 Synthesis Procedures of Silver Nanoparticles -- 8.3.1 Chemical Synthesis -- 8.3.2 Physical Methods -- 8.3.3 Biological Methods -- 8.4 Biological Application of Silver Nanoparticles -- 8.5 Bacterial Infection and Antibiotic Resistance -- 8.6 Nanosilver for Antibacterial Therapy -- 8.6.1 Metallic Silver Nanoparticles -- 8.6.2 Biosynthesized Silver Nanoparticles -- 8.6.3 Silver Nanocomposites -- 8.6.4 Silver Nanoscaffolds -- 8.7 Influence of Size and Shape of Silver Nanoparticles as Antibacterial Agents -- 8.8 Nanosilver and Its Mechanism of Action for Antibacterial Therapy -- 8.9 Application of Silver Nanoparticle in Commercial Products -- 8.9.1 Silver Nanoparticles in Wound Dressing Materials and Devices -- 8.9.2 Silver Nanoparticles in Soaps and Detergents -- 8.9.3 Silver Nanoparticles in Fabrics -- 8.9.4 Silver Nanoparticles in Cosmetics -- 8.9.5 Silver Nanoparticles in Food Packaging -- 8.9.6 Silver Nanoparticles in Paints -- 8.10 Toxicity of Silver Nanoparticles -- 8.11 Future Prospective and Challenges -- 8.12 Conclusion -- Take Home Message -- Questions and Answers -- Acknowledgments -- References -- Chapter 9 Microbial Gold Nanoparticles and Their Biomedical Applications -- Objectives -- 9.1 Introduction -- 9.2 Microbial Gold Nanoparticles Synthesis. 9.2.1 Bacteria-Mediated Gold Nanoparticles -- 9.2.2 Algae-Mediated Gold Nanoparticles -- 9.2.3 Fungi-Mediated Gold Nanoparticles -- 9.2.4 Yeast-Mediated Gold Nanoparticles -- 9.2.5 Mechanism Involved in Microbial Nanoparticles Synthesis -- 9.3 Applications of Microbial Gold Nanoparticles -- 9.3.1 Biosensing -- 9.3.2 Antibacterial Activity of Au NPs -- 9.3.3 Anticancer Activity of Microbial Gold Nanoparticles -- 9.4 Conclusion -- Acknowledgements -- Take Home Message -- Questions and Answers -- References -- Chapter 10 Nano-Bio Interactions and Their Practical Implications in Agriculture -- 10.1 Introduction -- 10.1.1 Agriculturally Beneficial Soil Microorganisms -- 10.2 Engineered Nanomaterials and Agriculture -- 10.2.1 Pathways for ENM to Soil -- 10.2.2 Fate of ENMs in Soil -- 10.2.3 Chemical Interactions of ENM in Soil -- 10.2.4 Mechanisms Controlling Heteroaggregation -- 10.2.5 Mobility of Colloids and ENMs in Soil -- 10.2.6 Nanoagriculture -- 10.2.7 Nanopesticides -- 10.2.8 ENMs and Agriculturally Beneficial Microorganisms -- 10.3 Summary -- References -- Chapter 11 Biogeochemical Interactions of Bioreduced Uranium Nanoparticles -- 11.1 Introduction -- 11.2 Coupled Biogeochemical Mechanisms and Interactions of U in the Subsurface -- 11.3 Biogenic Uraninite Precipitation and Its Nanoparticulate Forms -- 11.4 Re-oxidation and Stability of Bioreduced Uranium -- 11.5 Summary and Conclusions -- Questions and Answers -- References -- Chapter 12 Characterization and Quantification of Mobile Bioreduced Uranium Phases -- 12.1 Introduction -- 12.2 Characterization of Biogenic U(IV) -- 12.3 Quantification of Mobile Bioreduced U(IV) Nanoparticles -- 12.4 Summary and Conclusions -- Questions and Answers -- References -- Index -- EULA. |
Record Nr. | UNINA-9910830529103321 |
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|