top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Web Mining and Web Usage Analysis [[electronic resource] ] : 9th International Workshop on Knowledge Discovery on the Web, WebKDD 2007, and 1st International Workshop on Social Networks Analysis, SNA-KDD 2007, San Jose, CA, USA, August 12-15, 2007, Revised Papers / / edited by Haizheng Zhang, Myra Spiliopoulou, Bamshad Mobasher, C. Lee Giles, Andrew McCallum, Olfa Nasraoui, Jaideep Srivastava, John Yen
Advances in Web Mining and Web Usage Analysis [[electronic resource] ] : 9th International Workshop on Knowledge Discovery on the Web, WebKDD 2007, and 1st International Workshop on Social Networks Analysis, SNA-KDD 2007, San Jose, CA, USA, August 12-15, 2007, Revised Papers / / edited by Haizheng Zhang, Myra Spiliopoulou, Bamshad Mobasher, C. Lee Giles, Andrew McCallum, Olfa Nasraoui, Jaideep Srivastava, John Yen
Edizione [1st ed. 2009.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009
Descrizione fisica 1 online resource (XI, 155 p.)
Disciplina 006.3
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Computer communication systems
Data mining
Information storage and retrieval
Application software
Computers and civilization
Artificial Intelligence
Computer Communication Networks
Data Mining and Knowledge Discovery
Information Storage and Retrieval
Information Systems Applications (incl. Internet)
Computers and Society
ISBN 3-642-00528-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Spectral Clustering in Social Networks -- Looking for Great Ideas: Analyzing the Innovation Jam -- Segmentation and Automated Social Hierarchy Detection through Email Network Analysis -- Mining Research Communities in Bibliographical Data -- Dynamics of a Collaborative Rating System -- Applying Link-Based Classification to Label Blogs -- Why We Twitter: An Analysis of a Microblogging Community -- A Recommender System Based on Local Random Walks and Spectral Methods.
Record Nr. UNISA-996465950903316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advances in Web Mining and Web Usage Analysis [[electronic resource] ] : 7th International Workshop on Knowledge Discovery on the Web, WEBKDD 2005, Chicago, IL, USA, August 21, 2005, Revised Papers / / edited by Olfa Nasraoui, Osmar Zaiane, Myra Spiliopoulou, Manshad Mobasher, Brij Masand, Philip Yu
Advances in Web Mining and Web Usage Analysis [[electronic resource] ] : 7th International Workshop on Knowledge Discovery on the Web, WEBKDD 2005, Chicago, IL, USA, August 21, 2005, Revised Papers / / edited by Olfa Nasraoui, Osmar Zaiane, Myra Spiliopoulou, Manshad Mobasher, Brij Masand, Philip Yu
Edizione [1st ed. 2006.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2006
Descrizione fisica 1 online resource (X, 182 p.)
Disciplina 006.3
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Computer communication systems
Database management
Information storage and retrieval
Application software
Computers and civilization
Artificial Intelligence
Computer Communication Networks
Database Management
Information Storage and Retrieval
Information Systems Applications (incl. Internet)
Computers and Society
ISBN 3-540-46348-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Mining Significant Usage Patterns from Clickstream Data -- Using and Learning Semantics in Frequent Subgraph Mining -- Overcoming Incomplete User Models in Recommendation Systems Via an Ontology -- Data Sparsity Issues in the Collaborative Filtering Framework -- USER: User-Sensitive Expert Recommendations for Knowledge-Dense Environments -- Analysis and Detection of Segment-Focused Attacks Against Collaborative Recommendation -- Adaptive Web Usage Profiling -- On Clustering Techniques for Change Diagnosis in Data Streams -- Personalized Search Results with User Interest Hierarchies Learnt from Bookmarks.
Record Nr. UNISA-996466012303316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2006
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advances in Web Mining and Web Usage Analysis [[electronic resource] ] : 6th International Workshop on Knowledge Discovery on the Web, WEBKDD 2004, Seattle, WA, USA, August 22-25, 2004, Revised Selected Papers / / edited by Bamshad Mobasher, Olfa Nasraoui, Bing Liu, Brij Masand
Advances in Web Mining and Web Usage Analysis [[electronic resource] ] : 6th International Workshop on Knowledge Discovery on the Web, WEBKDD 2004, Seattle, WA, USA, August 22-25, 2004, Revised Selected Papers / / edited by Bamshad Mobasher, Olfa Nasraoui, Bing Liu, Brij Masand
Edizione [1st ed. 2006.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2006
Descrizione fisica 1 online resource (X, 189 p.)
Disciplina 006.3
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Computer communication systems
Database management
Information storage and retrieval
Application software
Computers and civilization
Artificial Intelligence
Computer Communication Networks
Database Management
Information Storage and Retrieval
Information Systems Applications (incl. Internet)
Computers and Society
ISBN 3-540-47128-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Web Usage Analysis and User Modeling -- Mining Temporally Changing Web Usage Graphs -- Improving the Web Usage Analysis Process: A UML Model of the ETL Process -- Web Personalization and Recommender Systems -- Mission-Based Navigational Behaviour Modeling for Web Recommender Systems -- Complete This Puzzle: A Connectionist Approach to Accurate Web Recommendations Based on a Committee of Predictors -- Collaborative Quality Filtering: Establishing Consensus or Recovering Ground Truth? -- Search Personalization -- Spying Out Accurate User Preferences for Search Engine Adaptation -- Using Hyperlink Features to Personalize Web Search -- Semantic Web Mining -- Discovering Links Between Lexical and Surface Features in Questions and Answers -- Integrating Web Conceptual Modeling and Web Usage Mining -- Boosting for Text Classification with Semantic Features -- Markov Blankets and Meta-heuristics Search: Sentiment Extraction from Unstructured Texts.
Record Nr. UNISA-996465596503316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2006
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Clustering Methods for Big Data Analytics : Techniques, Toolboxes and Applications / / edited by Olfa Nasraoui, Chiheb-Eddine Ben N'Cir
Clustering Methods for Big Data Analytics : Techniques, Toolboxes and Applications / / edited by Olfa Nasraoui, Chiheb-Eddine Ben N'Cir
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (IX, 187 p. 63 illus., 31 illus. in color.)
Disciplina 621.382
Collana Unsupervised and Semi-Supervised Learning
Soggetto topico Electrical engineering
Computational intelligence
Data mining
Big data
Pattern recognition
Communications Engineering, Networks
Computational Intelligence
Data Mining and Knowledge Discovery
Big Data/Analytics
Pattern Recognition
ISBN 3-319-97864-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Clustering large scale data -- Clustering heterogeneous data -- Distributed clustering methods -- Clustering structured and unstructured data -- Clustering and unsupervised learning for deep learning -- Deep learning methods for clustering -- Clustering high speed cloud, grid, and streaming data -- Extension of partitioning, model based, density based, grid based, fuzzy and evolutionary clustering methods for big data analysis -- Large documents and textual data clustering -- Applications of big data clustering methods -- Clustering multimedia and multi-structured data -- Large-scale recommendation systems and social media systems -- Clustering multimedia and multi-structured data -- Real life applications of big data clustering -- Validation measures for big data clustering methods -- Conclusion.
Record Nr. UNINA-9910337659403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui