top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Cost-Efficient Wastewater Treatment Technologies : Natural Systems / / Mahmoud Nasr and Abdelazim M. Negm, editors ; with contributions by O. Alizadeh [and forty-six others]
Cost-Efficient Wastewater Treatment Technologies : Natural Systems / / Mahmoud Nasr and Abdelazim M. Negm, editors ; with contributions by O. Alizadeh [and forty-six others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (384 pages)
Disciplina 628.3
Collana The Handbook of Environmental Chemistry Series
Soggetto topico Sewage - Purification - Technological innovations
Sewage - Purification - Cost effectiveness
ISBN 3-031-12918-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Series Preface -- Preface -- Contents -- Part I: Introduction -- Introduction to ``Cost-efficient Wastewater Treatment Technologies: Natural Systems´´ -- 1 Introduction -- 2 Waste Stabilization Ponds (WSPs) -- 3 Microalgae for Phycoremediation -- 4 Anaerobic Treatment of Sewage -- 5 Adsorption Technology in Wastewater Treatment -- 6 Green Nanomaterial for Environmental Remediation -- 7 Deactivation of Waterborne Pathogens in Natural Eco-Systems -- 8 Treated Wastewater Reuse for Irrigation -- 9 Agricultural Drainage Water (ADW) Management -- 10 Treated Wastewater Reuse for Irrigation: A Case Study in Mediterranean Rim -- 11 Agricultural Drainage Water (ADW) Management: A Danish Case Study -- 12 Surface Water Quality: A Case Study of Hron River -- 13 Conclusions -- References -- Part II: Concepts and Knowledge of Natural-Based Wastewater Treatment -- Nature-Based Treatment Systems for Reclaimed Water Use in Agriculture in Mediterranean Countries -- 1 Introduction -- 2 Reclaimed Water Use in Agriculture in Med Region -- 2.1 State of Play -- 2.2 Technical and Regulatory Aspects -- 2.2.1 Technical Aspects -- 2.2.2 Regulatory Aspects -- 2.3 Social Aspects -- 2.4 Environmental Aspects -- 2.5 Health Risks -- 2.5.1 Heavy Metals -- 2.5.2 Emerging Contaminant -- 2.5.3 Microbial Parameters -- 3 Natural Based Treatment Systems in Med Countries -- 3.1 Design, Construction, and Operation -- 3.2 Efficiencies -- 3.2.1 CW Located in San Michele di Ganzaria in Sicily -- 3.2.2 Hybrid-CW Located at the IKEA Store in Sicily -- 4 Conclusions and Recommendations -- References -- Treatment Systems for Agricultural Drainage Water and Farmyard Runoff in Denmark: Case Studies -- 1 Introduction -- 1.1 Agriculture Challenges in Northwestern Europe -- 1.2 Tile Drainage Water -- 1.3 Nutrient Losses in Tile Drains -- 2 State of the Art -- 2.1 Constructed Wetlands.
2.2 Denitrifying Bioreactors -- 2.3 Filter Systems -- 3 Case Studies -- 3.1 Surface-Flow Constructed Wetland: Fillerup -- 3.2 Surface-Flow Constructed Wetland Paired with Woodchip Bioreactor: Ryaa -- 3.3 Filter System: Rodstenseje -- 4 Conclusions -- 5 Recommendations -- References -- Cost-Effective Adsorbents for Reduction of Conventional and Emerging Pollutants in Modified Natural Wastewater Treatment -- 1 Introduction -- 1.1 Adsorption Process -- 1.2 Types of Adsorption Processes -- 1.2.1 Physical Adsorption -- 1.2.2 Chemical Adsorption -- 1.3 Adsorption Mechanisms -- 1.3.1 Physisorption -- 1.3.2 Chemisorption -- Chelation -- Complexation -- 1.3.3 Ion Exchange -- 1.3.4 Precipitation -- 1.3.5 Oxidation-Reduction -- 1.4 Operating Conditions and Factors Affecting Adsorption -- 1.5 Desorption and Reactivation of Adsorbents -- 2 Adsorption Models and Scale-up Considerations -- 2.1 An Introduction to Fixed-Bed Versus Batch Adsorption Processes -- 2.2 Batch Processes -- 2.2.1 Equilibrium Models -- Linear Henry Isotherm -- Langmuir Isotherm -- Freundlich Isotherm -- Temkin Isotherm -- BET Isotherm -- 2.2.2 Kinetic Models -- Diffusional Mass Transfer Models -- Adsorption Reaction Models -- Pseudo-First-Order Model -- Pseudo-Second-Order Model -- Elovich Model -- 2.2.3 Adsorption Thermodynamics -- 2.2.4 Scale-up Considerations for Batch Adsorption -- 2.3 Continuous Processes (Fixed Bed) -- 2.3.1 Characteristics of Continuous Adsorption -- Bed Density (ρB) -- Bed Porosity (εB) -- Bed Volume (VB) -- Flow Velocity (vF) -- Residence Time (tr) -- 2.3.2 Breakthrough Curve Models -- Bohart-Adams Model -- Thomas Model -- Wolborska Model -- Yoon-Nelson Model -- 2.3.3 Scale-Up Considerations for Continuous Adsorption -- Mass Transfer Zone (MTZ) Model -- Length of Unused Bed (LUB) Model -- 3 Low-Cost Adsorbents -- 3.1 Natural Materials.
3.2 Agricultural Wastes/By-Products -- 3.3 Industrial Wastes/By-Products -- 4 Modification of Low-Cost Adsorbents -- 5 Conclusion -- 6 Recommendation -- References -- Environmental-Friendly and Cost-Effective Agricultural Wastes for Heavy Metals and Toxicants Removal from Wastewater -- 1 Introduction -- 2 Wastewater Sources and Estimations in Developing Countries -- 3 The Contamination and the Need for Reusing Wastewater in Developing Countries -- 4 Common Methods and Materials for Wastewater Treatment -- 4.1 Physical Methods of Removing Pollutants -- 4.2 Chemical Methods of Removing Pollutants -- 4.3 Biological Methods -- 5 Low-Cost and Eco-Friendly Agricultural Wastes-Derived Absorbents -- 5.1 Activated Carbon (AC) Derived from Agricultural Wastes -- 5.2 Biosorbents from Agricultural Wastes -- 6 Conclusion -- References -- Green Synthesized Iron Nanoparticles for Environmental Management: Minimizing Material and Energy Inputs -- 1 Introduction -- 2 Green Chemistry -- 2.1 Principles of Green Chemistry -- 2.2 Merits of Green Chemistry -- 3 Green Synthesized Iron Nanoparticle -- 3.1 Properties of Iron Nanoparticles -- 3.2 Crystal Structure and Atomic Arrangement -- 3.3 Methods of Synthesis -- 3.3.1 Plant Extracts -- 3.3.2 Tea Extracts -- 3.3.3 Biomolecules -- 3.3.4 Microorganisms -- 3.4 Mechanism Behind the Green Synthesis of Iron Nanoparticles -- 4 Applications of Iron Nanoparticles -- 4.1 Wastewater Treatment -- 4.1.1 Dye Removal -- 4.1.2 Heavy Metal Removal -- 4.2 Degradation of Pollutants -- 4.3 Detection of Pesticide Contamination -- 5 Critical Approach to Green Synthesized Iron Nanoparticle -- 6 Conclusion -- 7 Future Prospects -- References -- Part III: Natural Wastewater Treatment Technologies -- Overview of Waste Stabilization Ponds in Developing Countries -- 1 Introduction -- 2 Types of Waste Stabilization Ponds (WSPs) -- 2.1 Anaerobic Ponds.
2.2 Facultative Ponds -- 2.3 Maturation Ponds -- 2.4 Other Pond Types -- 3 Design, Operation, and Maintenance -- 3.1 Pond Location, Construction, and Design -- 3.2 Operation and Maintenance of WSPs -- 4 Effluent Disinfection and Nutrient Removal -- 4.1 Pathogen Removal -- 4.2 Nitrogen and Phosphorus Removal -- 4.3 Heavy Metal and Micropollutant Removal -- 5 Advantages and Disadvantages of WSPs -- 6 Conclusions -- References -- Plasma Technology: A Novel Approach for Deactivating Pathogens in Natural Eco-Systems -- 1 Introduction -- 2 Thermal Plasma -- 3 Non-thermal Plasma -- 4 Generation Methods of Different Non-thermal Plasma -- 4.1 Direct Current Glow Discharge -- 4.2 Radio Frequency Discharge -- 4.3 Microwave Plasma -- 4.4 Dielectric Barrier Discharge -- 4.5 Atmospheric Pressure Plasma Jet -- 4.6 Corona Discharge -- 4.7 Pulsed Arc Discharge -- 5 Electrohydraulic Plasma Generation -- 5.1 Pulsed Corona Electrohydraulic Discharge (PCED) -- 5.2 Pulsed Arc Electrohydraulic Discharge (PAED) -- 6 Benefits and Current Challenges of Plasma in Environmental Applications -- 7 Mechanism of Atmospheric Cold Plasma for Bactericidal Activities -- 8 Conclusion -- 9 Future Perspectives in the Study -- References -- Application of Anaerobic Hybrid Filters for Sewage Treatment -- 1 Introduction -- 1.1 Anaerobic Sewage Treatment Evolution -- 1.2 Anaerobic vs. Aerobic Processes -- 1.3 Complementary Low-Cost Treatment Systems -- 1.4 Anaerobic Technologies for Sewage Treatment in Temperate Climates -- 1.4.1 UASB Reactor -- 1.4.2 Anaerobic Biofilm Reactors-Attached Growth -- 1.4.3 Anaerobic Filter Reactor -- 1.4.4 Anaerobic Hybrid Filter (AHF) -- 1.5 Temperature Effect -- 2 Laboratory Experiences -- 2.1 Experimental Work -- 2.2 Effluent Characterization -- 2.2.1 Materials and Methods -- 2.2.2 Startup of Reactors and Reactor Operation -- 2.3 Results.
2.3.1 Startup Behavior -- 2.3.2 COD and Suspended Solids Removal -- 2.3.3 COD and Suspended Solids Concentrations -- 2.3.4 Removal of Nutrients -- 2.3.5 System Stability -- 2.3.6 Biogas Production and Characteristics -- 2.3.7 Effect of the Packing Medium -- 2.4 Reactor Characterization -- 2.5 Methanogenic Activity -- 2.6 Bacterial Physiologies -- 2.7 Conclusion -- 3 Case Study: WWTP Experimental AHF Treatment of Community Sewage -- 3.1 Plant Description -- 3.2 Objectives -- 3.3 Full-Scale Performance of the AHF System -- 3.3.1 Technical Description -- 3.3.2 Startup of the System -- 3.4 WWTP Performance: Results and Discussion -- 3.5 Economic Performance -- 3.6 Discussion and Conclusions -- References -- Impact of Combined Sewer Overflows Events on Recipient Water Quality -- 1 Introduction -- 2 Mathematical and Numerical Models -- 2.1 Modelling of Quantity and Water Quality of Surface Streams -- 2.2 Methods Used for Evaluating the Effect of Wastewater on the Receiving Water -- 3 Case Study Bansk Bystrica: Hron River -- 3.1 Overall Goals of the Study -- 3.2 Runoff Modelling from the Urban Catchment of the Bansk Bystrica Town -- 3.3 Water Quality Modelling in the Receiving Hron River -- 3.4 CSO Spills Modelling -- 4 Results -- 4.1 Results of Water Quality Simulation in the Hron River -- 4.1.1 Results of Hydrodynamic Modelling -- 4.1.2 Results of Water Quality Modelling -- 4.2 Results of Modelling of the Impact of CSO Discharge on the Recipient -- 5 Discussion -- 6 Conclusions -- 7 Future Aspects -- References -- Part IV: Wastewater Management and Sustainability -- Water-Energy Nexus in Wastewater Management for Irrigation -- 1 Introduction -- 2 Water-Energy Nexus -- 2.1 Dimensions of Water-Energy Nexus -- 2.1.1 Environmental Dimension -- 2.1.2 Technological Dimension -- 2.1.3 Economic Dimension -- 2.1.4 Social Dimension -- 2.1.5 Political Dimension.
3 Wastewater Management Strategies.
Record Nr. UNINA-9910639896403321
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cost-efficient Wastewater Treatment Technologies : Engineered Systems / / edited by Mahmoud Nasr, Abdelazim M. Negm
Cost-efficient Wastewater Treatment Technologies : Engineered Systems / / edited by Mahmoud Nasr, Abdelazim M. Negm
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (526 pages)
Disciplina 354.81150006
628.3
Collana The Handbook of Environmental Chemistry
Soggetto topico Environmental chemistry
Water
Hydrology
Bioremediation
Industrial microbiology
Sustainability
Environmental management
Environmental Chemistry
Environmental Biotechnology
Industrial Microbiology
Environmental Management
ISBN 3-031-12902-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Overview, Objectives, Principles, and State-of-the-Art of Engineered-Based Wastewater Treatment Technologies -- Simplified Engineered-Based Wastewater Treatment Technologies: Energy, Climate Change, and Land-Use Aspects -- Biotechnology for Green Future of Wastewater Treatment -- Environmental Impact Assessment of Wastewater Reuse -- Cavitation Based Processes for Water and Wastewater Treatment -- Wastewater Treatment Using Biochar Technology -- Adsorption: A Cost-effective Wastewater Treatment Technology for Removal of Conventional and Emerging Organic Contaminants -- Nanotechnology-enabled Multifunctional Material for Removal of Toxicants from Wastewater -- Advanced Configurations for Efficient Membrane Bioreactors: Energy Saving Approaches -- Wastewater Treatment by Trickling Filter Technology as Low Energy Consumption Solution (Case Studies –Worldwide) -- Membrane Bioreactor for Wastewater Treatment: Current Status, Novel Configurations and Cost Analysis -- Activated Sludge Fungal Community in Wastewater Treatment Plants -- Anaerobic Treatment Systems: A Sustainable and Clean Environment with Future Hope of Renewable Energy -- Co-digestion of Fruit and Vegetable Wastes: An Opportunity to Enhance the Circular Economy of Anaerobic Digesters -- Trihalomethanes (THMs) in Wastewater: Causes and Concerns -- Degradation of Selected Xenobiotics from Wastewater by Wood-Decay Fungi -- Prospects and Potential Role of Biological Treatment of Textile Effluent to Restore Water Reservoir -- SnO2-Mixed Oxide Electrodes for Water Treatment: Role of Low Cost Active Anode -- Emerging Organic Compounds (EOCs) Removal from Water and Wastewater Using Innovative Technologies and Materials -- Intermittent Cycle Extended Aeration System (ICEAS) and its Application In Wastewater Treatment -- Sustainable and Green Management of Wastewater Under Climate Change Conditions -- Microbial Biosurfactants and their Implication Towards Wastewater Management -- Best Practice Management of Wastewater in Poland -- Emerging Technologies of Sludge Management (Drying, Incineraon, Pyrolysis, Torrefacon) -- Towards The Global Rise of Zero Liquid Discharge for Wastewater Management: The Mining Industry Case in Chile.
Record Nr. UNINA-9910639894103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui